
Mth6106: Group Theory (Mid-term Solutions)
Examiners: L. Shaheen

Question 1 [10 marks].

(a) Solution: An Abelian group G is a group for which the elements commute i.e., ab = ba
for all elements a,b ∈G.
All cyclic groups are Abelian, but an Abelian group is not necessarily cyclic. Set of
integers (Z,+) under addition is an example of abelian groups. The set of real numbers
(R,+) under addition is also an abelian group.
In an Abelian group, each element is in a conjugacy class of itself. [2]

(b) Solution: We ll have

(
x1 y1
0 1/x1

)(
x2 y2
0 1/x2

)
=
(

x3 y3
0 1/x3

)

where x3 = x1x2 and y3 = x1y2 + y1/x2. Hence M is closed under multiplication.
Matricxmultiplication is associative (as given). The identity element corresponds to
x = 1,y = 0. For the inverse

(
x y
0 1/x

)−1
=
(

1/x −y
0 1/x

)
∈M

Its non abelian, since for example

(
2 0
0 1/2

)(
1 1
0 1

)
=
(

2 2
0 1/2

)
6=
(

2 1/2
0 1/2

)
=
(

1 1
0 1

)(
2 0
0 1/2

)
[2]

(c) Solution: H is non empty since en = e is in H. Suppose x,y ∈H, then xn = e and yn = e.

(xy−1)n =(xy−1)(xy−1) · · ·(xy−1) n-times
(xy−1)n =(xn)(y−1)n since G is abelian
(xy−1)n =(xn)(yn)−1 = e.e−1 = e.e = e

If G is non-abelian then (xy)n = (xy)(xy)(xy) · · ·(xy), H cannot be closed. [3]

(d) Solution: The only possibility for ? in row 2 is c, otherwise there would be two c’s in the
last column.


e a b c
a e ? ?
b ? e ?
c ? ? ?
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Hence


e a b c
a e c b
b ? e ?
c ? ? ?



Again ? in row 3 must be c, and thus


e a b c
a e c b
b c e a
c b a e


Hence the group table is completely determined by the relations a2 = b2 = e. The
associativity of the composition law can easily be checked. The resulting group is called
Klein four group. [3]

Question 2 [10 marks].

(a) Solution: Cosets as equiavlence classes. Suppose G is a group with a subgroup H.
We define a relation (x,y) ∈RH if and only if xy−1 ∈H.
This is ean equivalence relation.

Reflexive: as xx−1 = 1 ∈H implies (x,x) ∈RH .
Symmetric: suppose (x,y) ∈RH then xy−1 ∈H, as H is a subgroup, it follows that
(xy−1)−1 = yx−1 ∈H and thus (y,x) ∈H.
Transitive: if xy−1 ∈H and yz−1 ∈H then xy−1yz−1 ∈H as H is closed as a subgroup,
this means (x,z) ∈H. [3]

(b) The dihedral group of order 12, denoted as D12, is the group of symmetries of a hexagon,
consisting of rotations r of order 6 and reflections s of order 2 considering as six axes of
symmetry.

(i) Solution:
D12 = {1, r,r2, r3, r4, r5, s,rs,r2s,r3s,r4s,r5s}

[2]
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(ii) Solutions: The set 〈r2〉 is generated by r2 a rotation by 180◦.
The powers of r2 are r2.r2 = r4, r2.r4 = e and r4.r4 = r2 so 〈r2〉 is a cyclic
subgroup of order 3.

〈r2〉= {e,r2, r4}

The inverse of r2 is r4, since r2.r4 = e, similarly inverse of r4 is r2.
This set is closed under multiplication, contains identity element, and each element
has an inverse. This is of order 3 which divides 12 (using Lagranges’ tHeorem) This
is a subgroup of D12. [2]

(iii) Solutions: The order of H is 3, therefore the index of H is 4, so there will be 4
cosets of H in D12.
the subgroup itself a coset: eH = {e,r2, r4}
left coset from r: rH = {r,r3, r5}
left coset from s: sH = {s,sr2, sr4}
left coset from sr: srH = {sr,sr3, sr5} [3]

Question 3 [10 marks].

(a) Consider the two permutations in S8 given by

f =

1 2 3 4 5 6 7 8
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
2 8 4 3 6 7 5 1

 , g =

1 2 3 4 5 6 7 8
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
7 1 3 2 5 6 8 4

 .

Solution: We get f = (128)(34)(567) and g = (17842) which leads to fg = (243)(5687)
and gf = (1567)(348). Using the method from Lemma 2.4 we can write

f = (12)(28)(34)(56)(67)

g = (17)(78)(84)(42)
so that f is odd and g is even. It follows that fg and gf must be odd, so only g belongs
to A8 and the others do not.
Order of f is 6, order of g is 5 and order of fg is 12. [4]
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(b) Let G be a group, let f,g ∈G, and suppose that f ∼G g. Show that the order of f is
equal to the order of g. [3]
Solution: Suppose first that f,g are conjugate. Then there is k ∈ Sn such that
g = kfk−1.
Suppose (a1 . . . ar) is a cycle of f . This means

f ·a1 = a2, f ·a2 = a3, . . . f ·ar = a1

which gives

k−1gk ·a1 = a2, k−1gk ·a2 = a3, . . . k−1gk ·ar = a1.

Applying k throughout, we get

g · (k ·a1) = k ·a2, g · (k ·a2) = k ·a3, . . . g · (k ·ar) = k ·a1.

And this means that (k ·a1 . . . k ·ar) is a cycle of g. So for every cycle of f , there is a
corresponding cycle of g of the same length. So the list of the lengths of the cycles of f is
the same as the list of the lengths of the cycles for g, i.e. f and g have the same cycle
type. Conversely, suppose f and g have the same cycle type. Then we can pair up the
cycles of f with the cycles of g so that each cycle of f is paired with a cycle of g of the
same length. Say we’ve paired up the cycle (a1 . . . ar) of f with the cycle (b1 . . . br) of g;
we define k ·ai = bi for each i. Then for each i we have

kfk−1 · bi = kf ·ai = k ·ai+1 = bi+1 = g · bi. (∗)

Doing this for every cycle, we get a function k : {1, . . . ,n}→ {1, . . . ,n} (because every
number in {1, . . . ,n} appears in exactly one cycle of f). Furthermore, k is a bijection
(because every number in {1, . . . ,n} appears in exactly one cycle of g); that is, k ∈ Sn.
By (∗) we have kfk−1 · b = g · b for all b ∈ {1, . . . ,n}, so kfk−1 = g. Since f and g have
same cycle types, they would have same l.c.m and hence same order.

(c) We have

f =

1 2 3 4 5 6 7
↓ ↓ ↓ ↓ ↓ ↓ ↓
2 6 5 1 7 4 3

 and g =

1 2 3 4 5 6 7
↓ ↓ ↓ ↓ ↓ ↓ ↓
6 5 1 2 4 7 3

 in Sn

Since
f = (1264)(357)

and

g = (3167)(254)

Yes, f and g are conjugate as they have same cylce type. We ll have k = (132)(47) [3]

Question 4 [10 marks].
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(a) (i) Solution:

G/N is abelian⇐⇒ (Nf)(Ng) = (Ng)(Nf) for all f,g ∈G

⇐⇒Nfg = Ngf for all f,g ∈G

⇐⇒ fgf−1g−1 ∈N for all f,g ∈G by the Coset Lemma.

So G/N is abelian if and only if N contains every commutator. But N is closed
under multiplication, so if it contains every commutator, then it contains G′. [2]

(ii) Give an example of a group G and two subgroups H1, H2 such that H1H2 6= H2H1
and H1H2 is not a subgroup of G. [3]
Solution: Take G = S3, H1 = {id,(12)} and H2 = {id,(23)}. Then

H1H2 = {id,(12),(23),(123)}.

H2H1 = {id,(12),(23),(132)}
(This is not a subgroup of S3, as we can see straight away from Lagrange’s
Theorem.)

(i) Solution: G is a group and A⊆G, then the centraliser of A in G.

CG(A) = {g ∈G |∀a ∈ A : gag−1 = a}

[2]
(ii) Solution: All rotations commute with r3 so the centraliser contains all five

rotations (including the identity). Since centraliser of a subset of a group is a
subgroup itself. It follows by Lagrange’s theorem that the centraliser either consists
only of rotations, or consists of all elements of D10.
Since r3s = sr−3 = sr2 6= sr3, r3 does not commute with s, so the centraliser is not
the whole of D10 and therefore must be {1, r,r2, r3, r4}. [3]
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