

School of Mathematical Sciences Mile End, London E1 4NS · UK

Examiner: Prof. O. Jenkinson

MTH6107 Chaos & Fractals MID-TERM TEST

Date: November 2024

Complete the following information:

Name	Model	Solutions
Student Number		
(9 digit code)		

The test has SEVEN questions. You should attempt ALL questions. Write your calculations and answers in the space provided. Cross out any work you do not wish to be marked.

Question	Marks
1	
2	
3	
4	
5	
6	
7	
Total Marks	

Nothing on this page will be marked!

Question 1.

Suppose $f: \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = x^2 - 12$.

- (a) Find all fixed points of f, and determine whether they are attracting or repelling.
- (b) Determine the points of least period 2 for f.

[25 marks]

Answer 1.

(a)
$$x = f(x) = x^2 - 12$$

 $\Rightarrow 0 = x^2 - x - 12 = (x - 4)(x + 3)$
 $\Rightarrow \text{ fixed points are } 4 \text{ and } -3$
Both are repelling: $|f'(4)| = 8 \times 1$, $|f'(-3)| = 6 \times 1$
 $x = f^2(x) = (x^2 - 12)^2 - 12$
 $= x^4 - 24x^2 + 132$
 $\Rightarrow 0 = x^4 - 24x^2 - x + 132$
 $= (x^2 - x - 12)(x^2 + x - 11)$
 $\Rightarrow \text{ Points of Least period } 2 \text{ are voots of } x^2 + x - 11$, in other words the values $\frac{1}{2}(-1 + \sqrt{1 + 44})$
 $= \frac{1}{2}(-1 + 3\sqrt{5})$

Answer 1. (Continue)

Question 2.

Order the integers from 1 to 20 inclusive using Sharkovskii's order.

[15 marks]

Answer 2.

Answer 2. (Continue)

Question 3.

Suppose the diffeomorphism $f: \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = x + \frac{2}{3}\sin x$. Determine the fixed points of f, and determine whether each fixed point is attracting or repelling.

[15 marks]

Answer 3.

$$f(x) = x \iff \frac{2}{3} \sin x = 0$$

$$\iff \sin x = 0$$

$$\iff c = n\pi \text{ for } n \in \mathbb{Z}$$

$$f \text{ is } C', \text{ with } f'(x) = 1 + \frac{2}{3} \cos x$$

$$\text{So } f'(n\pi) = \begin{cases} \frac{5}{3} > 1 & \text{if } n \text{ is even} \\ \frac{1}{3} \in (0\pi) & \text{if } n \text{ is odd} \end{cases}$$

$$\text{So } n\pi \text{ is } \text{ attracting if } n \text{ is odd},$$

$$\text{and repelling if } n \text{ is even}$$

Answer 3. (Continue)

Question 4.

Suppose $f: \mathbb{R} \to \mathbb{R}$ is C^1 , and that the numbers 1, 2, 3, 4, 5 form a 5-cycle, with derivatives

$$f'(n) = \begin{cases} n & \text{if } n \text{ is even} \\ \frac{1}{n} & \text{if } n \text{ is odd.} \end{cases}$$

Determine, with justification, whether the 5-cycle $\{1,2,3,4,5\}$ is attracting or repelling.

[15 marks]

Answer 4.

The multiplier of this 5-cycle is $\pm .2 \pm 3 + 5 = \%_5 \in (0,1)$, hence it is attracting

Answer 4. (Continue)

Question 5.

Suppose $f: \mathbb{R} \to \mathbb{R}$ has precisely 2 fixed points, and precisely 2 points of least period 2. Can f be a diffeomorphism? Justify your answer.

[10 marks]

Answer 5.

+ cannot be a diffeomorphism. If I was a diffeomorphism than it would either (a) be order preserving or (6) order reversing. In case (a) it could not have any points of least period 2, by a result we proved, and in Case (6) it could not have precisely two fixed points, since on order-reversing diffeomorphism has proved to have precisely one fixed point.

Answer 5. (Continue)

Question 6.

Suppose $f: \mathbb{R} \to \mathbb{R}$ has precisely 2 fixed points, precisely 2 points of least period 2, precisely 3 points of least period 3, but no points of least period 4.

 $\mbox{\sc Can}\ f$ be continuous? Justify your answer.

[10 marks]

Answer 6.

Frankovskii's Theorem, the presence of an orbit of least period -3 implies it must have an product or of least period orbit of least period 4, but this f does not.

Question 7.

Let $f_4:[0,1]\to[0,1]$ be the logistic map $f_4(x)=4x(1-x)$, and let $T:[0,1]\to[0,1]$ be the tent map

 $T(x) = \begin{cases} 2x & \text{if } 0 \le x < 1/2\\ 2 - 2x & \text{if } 1/2 \le x \le 1. \end{cases}$

Using the fact that $h \circ T = f_4 \circ h$, where $h: [0,1] \to [0,1]$ is the homeomorphism defined by

$$h(x) = \left(\sin\left(\frac{\pi x}{2}\right)\right)^2,$$

show that $x_0 = (\sin(\pi/9))^2$ is a periodic point for f_4 , and determine its least period. [10 marks]

Answer 7.

Since it is the image under h

of the point $\frac{2}{9}$, and it is easily

Checked that $\frac{2}{9}$ has least period 3

for the tent map (its abit is $\frac{7}{9}$, $\frac{9}{9}$)

Answer 7. (Continue)