School of Mathematical Sciences Mile End, London E1 4NS · UK Examiner: Prof. O. Jenkinson # MTH6107 Chaos & Fractals MID-TERM TEST Date: November 2024 # Complete the following information: | Name | Model | Solutions | |----------------|-------|-----------| | Student Number | | | | (9 digit code) | | | The test has SEVEN questions. You should attempt ALL questions. Write your calculations and answers in the space provided. Cross out any work you do not wish to be marked. | Question | Marks | |-------------|-------| | 1 | | | 2 | | | 3 | | | 4 | | | 5 | | | 6 | | | 7 | | | Total Marks | | | | | Nothing on this page will be marked! # Question 1. Suppose $f: \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = x^2 - 12$. - (a) Find all fixed points of f, and determine whether they are attracting or repelling. - (b) Determine the points of least period 2 for f. [25 marks] # Answer 1. (a) $$x = f(x) = x^2 - 12$$ $\Rightarrow 0 = x^2 - x - 12 = (x - 4)(x + 3)$ $\Rightarrow \text{ fixed points are } 4 \text{ and } -3$ Both are repelling: $|f'(4)| = 8 \times 1$, $|f'(-3)| = 6 \times 1$ $x = f^2(x) = (x^2 - 12)^2 - 12$ $= x^4 - 24x^2 + 132$ $\Rightarrow 0 = x^4 - 24x^2 - x + 132$ $= (x^2 - x - 12)(x^2 + x - 11)$ $\Rightarrow \text{ Points of Least period } 2 \text{ are voots of } x^2 + x - 11$, in other words the values $\frac{1}{2}(-1 + \sqrt{1 + 44})$ $= \frac{1}{2}(-1 + 3\sqrt{5})$ **Answer 1.** (Continue) #### Question 2. Order the integers from 1 to 20 inclusive using Sharkovskii's order. [15 marks] # Answer 2. **Answer 2.** (Continue) #### Question 3. Suppose the diffeomorphism $f: \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = x + \frac{2}{3}\sin x$. Determine the fixed points of f, and determine whether each fixed point is attracting or repelling. [15 marks] # Answer 3. $$f(x) = x \iff \frac{2}{3} \sin x = 0$$ $$\iff \sin x = 0$$ $$\iff c = n\pi \text{ for } n \in \mathbb{Z}$$ $$f \text{ is } C', \text{ with } f'(x) = 1 + \frac{2}{3} \cos x$$ $$\text{So } f'(n\pi) = \begin{cases} \frac{5}{3} > 1 & \text{if } n \text{ is even} \\ \frac{1}{3} \in (0\pi) & \text{if } n \text{ is odd} \end{cases}$$ $$\text{So } n\pi \text{ is } \text{ attracting if } n \text{ is odd},$$ $$\text{and repelling if } n \text{ is even}$$ **Answer 3.** (Continue) # Question 4. Suppose $f: \mathbb{R} \to \mathbb{R}$ is C^1 , and that the numbers 1, 2, 3, 4, 5 form a 5-cycle, with derivatives $$f'(n) = \begin{cases} n & \text{if } n \text{ is even} \\ \frac{1}{n} & \text{if } n \text{ is odd.} \end{cases}$$ Determine, with justification, whether the 5-cycle $\{1,2,3,4,5\}$ is attracting or repelling. [15 marks] #### Answer 4. The multiplier of this 5-cycle is $\pm .2 \pm 3 + 5 = \%_5 \in (0,1)$, hence it is attracting Answer 4. (Continue) #### Question 5. Suppose $f: \mathbb{R} \to \mathbb{R}$ has precisely 2 fixed points, and precisely 2 points of least period 2. Can f be a diffeomorphism? Justify your answer. [10 marks] Answer 5. + cannot be a diffeomorphism. If I was a diffeomorphism than it would either (a) be order preserving or (6) order reversing. In case (a) it could not have any points of least period 2, by a result we proved, and in Case (6) it could not have precisely two fixed points, since on order-reversing diffeomorphism has proved to have precisely one fixed point. **Answer 5.** (Continue) #### Question 6. Suppose $f: \mathbb{R} \to \mathbb{R}$ has precisely 2 fixed points, precisely 2 points of least period 2, precisely 3 points of least period 3, but no points of least period 4. $\mbox{\sc Can}\ f$ be continuous? Justify your answer. [10 marks] ## Answer 6. Frankovskii's Theorem, the presence of an orbit of least period -3 implies it must have an product or of least period orbit of least period 4, but this f does not. #### Question 7. Let $f_4:[0,1]\to[0,1]$ be the logistic map $f_4(x)=4x(1-x)$, and let $T:[0,1]\to[0,1]$ be the tent map $T(x) = \begin{cases} 2x & \text{if } 0 \le x < 1/2\\ 2 - 2x & \text{if } 1/2 \le x \le 1. \end{cases}$ Using the fact that $h \circ T = f_4 \circ h$, where $h: [0,1] \to [0,1]$ is the homeomorphism defined by $$h(x) = \left(\sin\left(\frac{\pi x}{2}\right)\right)^2,$$ show that $x_0 = (\sin(\pi/9))^2$ is a periodic point for f_4 , and determine its least period. [10 marks] # Answer 7. Since it is the image under h of the point $\frac{2}{9}$, and it is easily Checked that $\frac{2}{9}$ has least period 3 for the tent map (its abit is $\frac{7}{9}$, $\frac{9}{9}$) Answer 7. (Continue)