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Homomorphism of Groups
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Second Isomorphism of Groups
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Third Isomorphism of Groups
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Automorphism Groups
Definition
An automorphism of G is an isomorphism from G to G. The automorphism group
of G is the set of all automorphisms of G, written as Aut(G).
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Automorphism Groups

Suppose g € G, and define p; : G — G by pg(h) = ghg™!. Then p, is an
automorphism of G.
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Automorphism Groups

Definition

An automorphism of G is called an inner automorphism if it has the form p, for some
g € G. The inner automorphism group of G (written /nn(G)) is the set of all inner
automorphisms of G.

Definition: Now recall that Z(G) denotes the centre of G, i.e.
Z(G)={ge G:gh=nhgforall he }.
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Automorphism Groups

| Proposition
N\ Aut(G) is a group under composition.

Lemma

Suppose g € G, and define p; : G — G by pg(h) = ghg™!. Then p, is an
automorphism of G.
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Automorphism Groups

Example: Take G = C4 = {1, z,22,23}. An automorphism ¢ of C, is determined by
what it does to z (because if ¢(z) = h, then ¢(z?) = h? for all a). If we take ¢(z) =1
or z2, then we'll have ¢(z%) = 1; but then ¢ is not injective, because ¢(1) = 1 too. So
the only possibilities are ¢(z) = z and ¢(z) = z3. And both of these work: the first
one is just the identity map, and the second is the automorphism which sends every
element to its inverse.

So AutCy = {id, ¢}, where ¢(z) = z3. Observe that ¢(¢(z)) = #(z3) = z° = z, so
¢o¢=id. So AutCs has the following Cayley table.




Automorphisms Groups
Definition
An automorphism of G is called an inner automorphism if it has the form p, for

some g € G. The inner automorphism group of G (written Inn(G)) is the set of all
inner automorphisms of G.
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Outer AWm of Groups

 ~——

C, (M= xe6 [a=2"

g?,psg/a /£7 42}/53) lt; C



Outer Automorphism of Groups

Outer automorphism
The outer automorphism group of G is the quotient OutG = Aut(G)/Inn(G).
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Outer Automorphism of Groups
Example: Let's see an outer automorphism of Dg. Let t denote rotation through 45°
clockwise about the centre of the square, and define ¢ : Dg — Dg by g — tgt 1.
Then we get

1—1, re—r,
r2 r2’ r3 r37
S+—— s, rs —s r’s,

r’s— r3s, rPs—s,

so ¢ is a bijection from Dg to Dg. The fact that ¢ is a homomorphism is the same as
the proof of Lemma 4.7. So ¢ € Aut(G). ¢ cannot be an inner automorphism,
because an inner automorphism maps each element to a conjugate element, whereas

¢(s) = rs #py s.



Automorphisms of Groups
In fact |AutDg| = 8, and from Theorem 4.8 |InnDg| = 4. So |OutDg| = 2, and hence
OutDg = {InnDg id, InnDgo}.
To see where ¢ comes from, consider the following picture.




Automorphisms of Groups
We can see that every symmetry of the square gives a symmetry of the octagon, which
means that Dg < Die. In fact, Dg > D16 because |Dig : Dg| = 2. t is an element of
D1, so there is an inner automorphism of Dig which maps g +— tgt™! for every g. ¢
is just the restriction of this inner automorphism to Dg.



Exams Style Questions

Question: Let ¢ : G — G, a homorphism.
(i) If H2 > G2, then gb_l(HQ) > Gl.
(ii) If H1 > Gy and ¢ is an epimorphism then ¢(H;) > G,.

Proof (i) If x € ¢71(Hy) and a € Gy, then ¢(x) € Ha and so

d(axat) = ¢(a)d(x)p(a) "t € Ha since Hy is normal. We conclude axa™! € ¢~ 1(Ha).
(ii) Since Hj is normal, we have ¢(a)¢(H1)p(a)™t C ¢(Hi). Since we assume ¢ is
surjective, every b € Gy can be written as b = ¢(a), a € G;. Therefore

bp(Hi)b~t € ¢(Hy).

Remarks: Note that with the choice H, = {e} the theorem says that ker¢ > Gj.



QMplus Quiz

Attempt Quiz 8 at QMplus page



Some Useful Notations

(Throughout this course, we use the following notation.
@ C, denotes the cyclic group of order n.

@ Kilein group often symbolized by the letter V4 or as K4y = Z4 X Z4 denotes the
group {1, a, b, c}, with group operation given by

P =p=c=1, ab=ba=c, ac=ca=b, bc=cb=a.

@ U, is the set of integers between 0 and n which are prime to n, with the group
operation being multiplication modulo n.




Some Useful Notations

@ Dy, is the group with 2n elements

1, r r .., Y os s, s, ..., " ls

The group operation is determined by the relations r” = s> =1 and
sr=r""ls.

@ S, denotes the group of all permutations of {1,..., n}, with the group
operation being composition.

@ GL,(R) is the group of n x n invertible matrices with entries in R, with the
group operation being matrix multiplication.

e Qg is the group {1,—1,/i,—i,j,—j, k,—k}, in which

P=P2=k>=-1, =k, jk=i, ki=], ji=—k, ki =—i, ik=—j.
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