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Homomorphisms
Definition
Suppose G, H are groups.

@ A homomorphism from G to H is a function ¢ : G — H such that
9(fg) = B(f)(g) for all f, g € G.
e An isomorehism from G to H is a homomorphism which is also a bijection.
N —

e G, H are isomorphic (written G = H) if there is at least one isomorphism from G
to H.
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Lemma

Suppose G, H are groups and ¢ : G — H is a homomorphism. Then ¢(1) =1, and
¢(g~") = (#(g)) " for every g € G.

If  : G — H is an isomorphism then ¢~! : H — G is an isomorphism too.
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Homomorphisms

Definition
Suppose ¢ : G — H is a group homomorphism. The image of ¢ is the set
im¢ = {¢(g)| g € G}. The kernel of ¢ is the set kerp = {g € G : #(g) = 1}.

Gm o = J 4l 3€6) 241
o e

(=




Homomorphisms

Examples: o J/e r,a-,,gaﬂ Aa(rwanbUm.
Ts6—H ~
jMT= {:’M} pet 1= Cr
e HZLO6 e H— 6
E(hy=h b M—=>6

mi= H
it .



Homomorphisms

Lemma
Suppose ¢ : G — H is a group homomorphism. Then ¢ is injective if and only if }
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First Isomorphism Theorem M we
Suppose G, H are groups and ¢ : G — H is a homomorphism. Then
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Isomorphism Theorem
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First Isomorphism Theorem
Example: Det: GL,(F) — F* induces an isomorphism GL,(F)/SLn,(F) = F*
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Second Isomorphism Theorem
Suppose G is a group, H> G, K> G and K C H. Then
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Third Isomorphism Theorem Kacd)= Ui
For the next isomorphism theorem, recall the product Kﬁ é«_ 6//4

HN = {hn|h € H, ne N}.
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Third Isomorphism Theorem N & HK
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Third Isomorphism Theorem
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Revision: Exams Style Questions
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Exams Style Questions

Question: Let ¢ : G — G, a homorphism.
(i) If H2 > G2, then gb_l(HQ) > Gl.
(ii) If H1 > Gy and ¢ is an epimorphism then ¢(H1) > G,.

Proof (i) If x € ¢71(Hy) and a € Gy, then ¢(x) € Ha and so

d(axat) = ¢(a)d(x)p(a) "t € Ha since Hy is normal. We conclude axa™! € ¢~ 1(Ha).
(ii) Since Hj is normal, we have ¢(a)¢(H1)p(a)™t C ¢(Hi). Since we assume ¢ is
surjective, every b € Gy can be written as b = ¢(a), a € G;. Therefore

bp(Hi)b™t € ¢(Hy).

Remarks: Note that with the choice H, = {e} the theorem says that ker¢ > Gj.



QMplus Quiz

Attempt Quiz 6 at QMplus page
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Some Useful Notations

(Throughout this course, we use the following notation.
@ C, denotes the cyclic group of order n.

o Kilein group often symbolized by the letter V4 or as K4 = Z4 X Z4 denotes the
group {1, a, b, c}, with group operation given by

P =pr=c=1, ab=ba=c, ac=ca=b, bc=cb=a.

@ U, is the set of integers between 0 and n which are prime to n, with the group
operation being multiplication modulo n.




Some Useful Notations

@ Dy, is the group with 2n elements

1, r % .., Y os s, s, .., " ls

The group operation is determined by the relations r” = s> =1 and
sr=r""ls.

@ S, denotes the group of all permutations of {1,..., n}, with the group
operation being composition.

@ GL,(R) is the group of n x n invertible matrices with entries in R, with the
group operation being matrix multiplication.

e Qg is the group {1,—-1,/i,—i,j,—j, k,—k}, in which

P=P2=k>=-1, =k, jk=i, ki=], ji=—k, ki =—i, ik=—j.
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