

Dr Lubna Shaheen

Assessment or Mid-Term is in (III^{TU}NOV) Week 8- Monday 10:00am Fhiday S:00Pm

Table of Contents

Commutator subgroups

- **2** Homomorphisms and Isomorphisms
- **③** First Isomorphisms Theorem
- Second Isomorphism Theorem
- **5** Third Isomorphism Theorem
- 6 Revision: Week 1- Week 5 content

in Week-7

NO Mid-Tesm

Revision: Commutator subgroups

[f,g] = f(gf') - commutator

* G-abelian [f,g]=1

 $G' = \frac{3}{2}12$

Example: G=R& $\mathcal{R}_{8}^{\prime}=\left\{ 1,\mathcal{K}^{2}\right\}$

Revision: Commutator subgroups

Proposition: For any group G, G' SG

observation: G/G'is abelian.

GIG' is group.

Definition

Suppose G, H are groups.

- A homomorphism from G to H is a function $\phi : G \to H$ such that $\phi(fg) = \phi(f)\phi(g)$ for all $f, g \in G$.
- An **isomorphism** from G to H is a homomorphism which is also a bijection.
- G, H are **isomorphic** (written $G \cong H$) if there is at least one isomorphism from G to H.

$$\begin{aligned} & \mathcal{U}(f \circ g) = \mathcal{U}f \neq \mathcal{U}g, \text{ for all } f, g \in G. \\ & \mathcal{U}: H \rightarrow G, \quad \mathcal{U}(h_1 \cdot h_2) = \mathcal{U}(h_1) \cdot \mathcal{U}(h_3) \\ & G_1 \cong H \end{aligned}$$

Homorphisms G, H are groups, Examples: 1) 4:g+>1, for all gEG, Triveal $U: G \rightarrow H$ Homomorphism $GL_n(R) \rightarrow R^*$ $det(g,g_2) =$ det (g;). det (g.) $4(g_1g_2) = 4(g_3) = 1 =$ $1.2 = 4[g_1) - 4[g_3]$

Homorphisms $: H \rightarrow G$ Examples: 2) $H \leq G_{7}$ i(h) = hgachesion Homomorphism. 3) $\wedge \leq G, \pi: G \longrightarrow G_{/\Lambda}$ g → Ng $\mathcal{T}(g_1g_2) = \mathcal{N}g_1g_2$ $= (Ng_1)(Ng_2) = \overline{\Lambda}(g_1)\overline{\Lambda}(g_2)$ Quolient Homomorphism.

4: G -> H

Lemma

Suppose G, H are groups and $\phi : G \to H$ is a homomorphism. Then $\phi(1) = 1$, and $\phi(g^{-1}) = (\phi(g))^{-1}$ for every $g \in G$.

Exercise If $\phi : G \to H$ is an isomorphism then $\phi^{-1} : H \to G$ is an isomorphism too. $U(1_G) = 1_H$ $U(1_G') = (U(1_G))'$ DLUDI: (4195)(4195) = 14 $(419^{1})(419) = 14$

Definition

Suppose $\phi : G \to H$ is a group homomorphism. The **image** of ϕ is the set $\operatorname{im} \phi = \{\phi(g) \mid g \in G\}$. The **kernel** of ϕ is the set $\operatorname{ker} \phi = \{g \in G : \phi(g) = 1\}$.

9m 4 = 3419):9EGF ⁵geG: 419)=1}

Homomorphisms Examples: • The Thiria homomorphism. T:G->H Kes T= G Jm T= 31H} • $H \leq G_1$ $i: H \rightarrow G_1$ i(h) = hi: H->G $g_{mi} = H$ $Keri = \{1_h\}$ n () ()

Lemma

Suppose $\phi : G \to H$ is a group homomorphism. Then ϕ is injective if and only if $\ker \phi = \{1\}$.

Priof: 4 is imjective 96 $g \in Kes(4) => 4(g) = 2_{H} = 4(2G)$ => 4191 = 4(16)9=1G one-one Ker 4 = 3 1 G }

Homomorphisms Conversely Ker (f = { 1 } Q(f) = Q(g)figea, $\mathcal{L}(fg') = \mathcal{L}(f) \cdot \mathcal{L}(g') = \mathcal{L}(g) \cdot \mathcal{L}(g')$ fg'e Ker 4 => fg'= 1 = 7 f = gUs -> one-one

Isomorphism Theorem Jhis Theorem is Very Jumporbant First Isomorphism Theorem as we use it a u lot. Suppose G, H are groups and $\phi: G \to H$ is a homomorphism. Then \bigcirc im $\phi < H$, V.Gmp ✓ ② ker $\phi \supseteq G$, and **3** $G/\ker\phi \cong im\phi$. Proof: 1) 1EG, 411) = IH & gom 4 $U(f), U(g) \in Om U$ $4(f) \cdot 4(g)' = 4(fg') = 4(f_2) \in 9mlf$ Jonlf is a Subgroup

Isomorphism Theorem

 $\mathcal{L}(1G) = \mathcal{I}_{H}$ proof: 2) · 1 E Kery fige Kesu => 4(f)=1,, 4(g)=1, $\psi(fg') = \psi(f) \psi(g') = \psi(f) (\psi(g))'$ = 2 11 . (11) gEG. nEKer(4) $= 2 \mu$ $\mathcal{L}(gng') = \mathcal{L}(g) \cdot \mathcal{L}(n) \cdot \mathcal{L}(g')$ = 4(9). 1H. 4(9)' = IN Kest & G

First Isomorphism Theorem

Example: Det: $GL_n(F) \to F^{\times}$ induces an isomorphism $GL_n(F)/SL_n(F) \cong F^{\times}$ j,geG C) Define D: G Kesu = 9ml Ker4.f=Kerff.9 : Kery. g ~ 4(g) by caset home O is well-define. _____ fg' C Kos Cp Dis a group homomorphism (41fg")=1 O ((Ker 4. f) - (Ker (P. g)) = O (Ker 4. f) | 4 (f)= Q is Jsomosphism (Ker 4. g) 4(g)

Second Isomorphism Theorem & D is one-one Ronto Second Isomorphism Theorem Suppose G is a group, $H \supseteq G$, $K \supseteq G$ and $K \subseteq H$. Then \checkmark_{1} K \triangleright H, (ⓐ) H/K ⊵ G/K, and $(G/K)/(H/K) \cong G/H.$ $\kappa \leq H$, KEH, KSG KA H, gbg'EK, for all gEG, hEK, This is true, for all g EH $K \leq H$.

Second Isomorphism Theorem Proof:2) Q: G/K -> G/H fost GIR (HIR) = G/H (by gsomosphis Theorem) 4: Kg Hg well-define: Kf=Kg, by caset Lemma, fg'EK, KEH, fg'Elt Hf= Hg o y is homomorphism: U((kf)(kg)) = U(kfg) = Hfg $=Hf\cdot Hg$ $\checkmark = \mathcal{Y}(\mathcal{K}_f) \cdot \mathcal{Y}(\mathcal{K}_g)$ Susjective HgEGIH IJ $|K9\rangle = H9$

Third Isomorphism Theorem

For the next isomorphism theorem, recall the product

$$HN = \{hn | h \in H, n \in N\}.$$

НN

Third Isomorphism Theorem

Suppose G is a group, $H \leq G$ and $N \succeq G$. Then

$$N \supseteq HN,$$

$$H \cap N \supseteq H, \text{ and }$$

Proof:

NAHN

N=INGHN, NGHN

Ker(4) = H/K KAEGIK Ker 4 => 4 (Kg)= H1 = Hg = H·1 EH

<Я |ЯЕН} Ker Y= - H K

NSHN **Third Isomorphism Theorem** Proof: Proof: NI △G, gngeN ¥gEG, gngⁱen! ¥gEHN! 4: H-> GI/N LP(h) = NH H/HAN = HN/N

Third Isomorphism Theorem

Y is a group homomorphism $\mathcal{U}(hh) = \mathcal{U}(h)\mathcal{U}(h)$ $\psi(hh) = N hh = N h N h = \psi(h) \psi(h)$ Kerlf=HANI (claim) $Kerlf = SheH: LP(h) = NI \cdot 1$ = 3hEH: NI.h = NI.1 {

Third Isomorphism Theorem = ZhEH: hENJ = HNNI Jon 4 = HNI/N (claum) HN/N = 3 Nhn: h E H, n E N} = 3N/h: Nhn = Nh by caset Lemma = 9m 4 hnh EN (Norma)

Revision: Exams Style Questions Example: 4: Q8 -> D8 (first Osomosphin) $Q(\bar{i}) = \Lambda^2$ $\mathcal{L}(h) = \mathcal{L}(i \cdot j) = \mathcal{R}^{2} \mathcal{S}$ $\varphi(j) = \varphi$ $y(-h) = y(-1.h) = x^2 S$ Q(1) = 1Check if if a group homomorphism? $(q(-1) = R^{4} = 1)$ $\mathcal{U}(-\tilde{z}) = \Lambda^2$ $K = KerQ = \frac{3}{1}, -1$ 4(j)= & $(q_{l-s}) = S$

Revision: Exams Style Questions Jm 4 = 22, 12, 8, 125 Q8/Kesel = Jomes {K1, Ki, Kj, Kh } { 1, K², \$, \$\$ Define The isomorphism as gover about Information.

Exams Style Questions

Question: Let $\phi : G_1 \to G_2$ a homorphism. (i) If $H_2 \supseteq G_2$, then $\phi^{-1}(H_2) \supseteq G_1$. (ii) If $H_1 \supseteq G_1$ and ϕ is an epimorphism then $\phi(H_1) \supseteq G_2$.

Proof (i) If $x \in \phi^{-1}(H_2)$ and $a \in G_1$, then $\phi(x) \in H_2$ and so $\phi(axa^{-1}) = \phi(a)\phi(x)\phi(a)^{-1} \in H_2$ since H_2 is normal. We conclude $axa^{-1} \in \phi^{-1}(H_2)$. (ii) Since H_1 is normal, we have $\phi(a)\phi(H_1)\phi(a)^{-1} \subseteq \phi(H_1)$. Since we assume ϕ is surjective, every $b \in G_2$ can be written as $b = \phi(a)$, $a \in G_1$. Therefore $b\phi(H_1)b^{-1} \in \phi(H_1)$.

Remarks: Note that with the choice $H_2 = \{e\}$ the theorem says that $ker\phi \ge G_1$.

QMplus Quiz

Attempt Quiz 6 at QMplus page

(Campus-M) - EV-RN-IQ

Some Useful Notations

Throughout this course, we use the following notation.

- C_n denotes the cyclic group of order n.
- Klein group often symbolized by the letter V₄ or as K₄ = ℤ₄ × ℤ₄ denotes the group {1, a, b, c}, with group operation given by

$$a^2 = b^2 = c^2 = 1$$
, $ab = ba = c$, $ac = ca = b$, $bc = cb = a$.

• U_n is the set of integers between 0 and *n* which are prime to *n*, with the group operation being multiplication modulo *n*.

Some Useful Notations

• \mathcal{D}_{2n} is the group with 2n elements

1,
$$r, r^2, \ldots, r^{n-1}, s, rs, r^2s, \ldots, r^{n-1}s$$
.

The group operation is determined by the relations $r^n = s^2 = 1$ and $sr = r^{n-1}s$.

- S_n denotes the group of all permutations of $\{1, \ldots, n\}$, with the group operation being composition.
- $GL_n(\mathbb{R})$ is the group of $n \times n$ invertible matrices with entries in \mathbb{R} , with the group operation being matrix multiplication.
- \mathcal{Q}_8 is the group $\{1, -1, i, -i, j, -j, k, -k\}$, in which

$$i^2 = j^2 = k^2 = -1$$
, $ij = k$, $jk = i$, $ki = j$, $ji = -k$, $kj = -i$, $ik = -j$.