Selected solution to problem set 6
2. The solution is

$$||(x,t)| = \frac{1}{2} [= e^{-(x+ct)^2} + e^{-(x+ct)^2}]$$

 $+ \frac{1}{2}c \int_{x+ct}^{x} | ds$
 $+ \frac{1}{2}c \int_{0}^{t} \int_{x-ct+cs}^{x+ct+cs} (-r) dr ds$
 $= \frac{1}{2} [e^{-(x+ct)^2} + e^{-(x+ct)^2}] + t$
 $= \frac{1}{2} [e^{-(x+ct)^2} + e^{-(x+ct)^2}] + t$
 $= \frac{1}{2} [e^{-(x+ct)^2} + e^{-(x+ct)^2}] + t$
 $+ \frac{(x+ct-cs)^3}{12c^2} \int_{0}^{t} + \frac{(x+cct+cs)^2}{12c^2} \int_{0}^{t}$
 $= \frac{1}{2} [e^{-(x+ct)^2} + e^{-(x+ct)^2}] + t$
 $+ \frac{x^3}{6c^2} + \frac{(x+ct)^3 + (x+ct)^3}{12c^2}$

-

-

 $\Im_{5} \cdot \text{the period Solutions are.}$ $W(x,t) = \overset{\cong}{\underset{n=1}{\cong}} \operatorname{Qn} \operatorname{Sin}(nx) \operatorname{cs}(nct) + \operatorname{bn}(\zeta,n(nx)) \operatorname{Sin}(nct),$ with $\operatorname{Qn} = \frac{2}{\pi} \int_{0}^{\pi} \operatorname{Sin} X \cdot \operatorname{Gin}(nx) dX$ $= \frac{2}{\pi} \int_{0}^{\pi} \frac{1 - \cos(2x)}{2} dx, \quad n=1$ $= \frac{2}{\pi} \int_{0}^{\pi} \frac{1 - \cos(2x)}{2} dx, \quad n=1$

So the south is U(x,t) = Sin X COS(Ct)

(5) The string is allowed to move up and down, but always orthoghoad to the ' axis at the left end. For an intial bamp It first separate into 2 banps \$ TH After some fine the left bump hit the wall " (1-axis) and is reflected then both bumps are propagating to right $\sim \rightarrow$

(a)
$$\int_{-\infty}^{\infty} \frac{(u+1)}{2} dx - 0 + \frac{1}{2} \frac{d}{dt} \int_{-\infty}^{\infty} \frac{a^2(u+1)^2}{2} dx$$

 $-c^2 \int_{-\infty}^{\infty} u+1^2 = 0.$
Namely
 $\frac{d}{dt} \int_{-\infty}^{\infty} \left(\frac{u+2}{2} + \frac{a^2(u+2)}{2}\right) dx = c \int_{-\infty}^{\infty} u+1^2$
 ≤ 0
So the energy is non-increasing
becase $c < 0.$
Suppose U_1, U_2 are 0 two solutions
to $\int_{-\infty}^{\infty} u+1 - a^2(u+1) - c(u+1) = \frac{1}{2}(x), \quad (0, 1)$

to
$$\left(\begin{array}{c} U(x_{i}) = Q(x_{i}), Cu_{i} = Q(x_{i}) = Q(x_{i}), Cu_{i} = Q(x_{i}) = Q(x_{$$

 $\int W(x'o) = 0$, $M^{+}(x'o) = 0$

1

Owe see that from the first part of the question that. $\frac{d}{dt}$ EEU](t) = 0, But $E[u](o) = \int o^2 + o^2 dx = 0$ So E[u](f) = 0 for all f. Makely $U_t \equiv 0, U_X \equiv 0$ and so U = 0, we must have U1 = U2 and the solution to $\begin{cases}
Uf(x, a) = f(x), & Uf(x, a) = f(x), & Uf(x, a) = f(x), \\
U(x, a) = f(x), & Uf(x, a) = f(x), \\
\end{bmatrix}$ is anight.

$$\frac{P56 \text{ Ql}:}{\text{Using the formula (2.6) in Week 6 notes}}$$

$$\frac{Fr \text{ in homogeness problem with}}{Fr \text{ in homogeness problem with}}$$

$$\frac{V(cx) = 5inx}{f(cx) = 0} \quad \text{and } c = 1$$

$$\frac{g(cx) = 5inx}{g(cx) = 5inx}$$

$$\text{we get}$$

$$\frac{U(cx, t) = \frac{0t0}{2} + \frac{1}{2} \int_{x-t}^{x+t} sinsds}{\int_{x-t+s}^{x+t+s} sin r dr ds}$$

$$= \frac{(ss(cx-ct) - (ss(cx+t+s)) - (cs(cx+t+s))]}{t} ds$$

$$= \frac{(ss(cx-ct) - (ss(cx+t+s)) - (cs(cx+t+s))]}{t} ds$$

$$= \frac{GS(X+GE) - GS(X+GE)}{2} + \frac{Sin(X+GE) + Gin(X+GE)}{2}$$

PS 6 Q.4:
For this Quantition, we can directly apply
the founds in section 3 of Week 5 ndes
with
$$L = T$$

 $G = b \sin x + 2b \sin 2x$)
 $G = 5in x$
thus $a_n = \frac{2}{\pi} \int_{0}^{L} [b \sin x + 2b \sin 2x] \leq h(hx) dx$
 $b_n = \frac{2}{\pi \pi} \int_{0}^{L} [b \sin x + 2b \sin 2x] \leq h(hx) dx$
 $b_n = \frac{2}{\pi \pi} \int_{0}^{L} [b \sin x + 2b \sin 2x] \leq h(hx) dx$
 $b_n = \frac{2}{\pi \pi} \int_{0}^{L} [b \sin x + 2b \sin 2x] \leq h(hx) dx$
 $b_n = \frac{2}{\pi \pi} \int_{0}^{L} [b \sin x + 2b \sin 2x] \leq h(hx) dx$
 $b_n = \frac{2}{\pi \pi} \int_{0}^{L} [b \sin x + 2b \sin 2x] \leq h(hx) dx$
 $b_n = \frac{2}{\pi \pi} \int_{0}^{L} [b \sin x + 2b \sin 2x] \leq h(hx) dx$
 $b_n = \frac{2}{\pi \pi} \int_{0}^{L} [b \sin x + 2b \sin 2x] \leq h(hx) dx$
 $b_n = \frac{2}{\pi \pi} \int_{0}^{L} [b \sin x + 2b \sin 2x] \leq h(hx) dx$
 $b_n = \frac{2}{\pi \pi} \int_{0}^{L} [b \sin x + 2b \sin 2x] \leq h(hx) dx$
 $b_n = \frac{2}{\pi \pi} \int_{0}^{L} [b \sin x + 2b \sin 2x] \leq h(hx) dx$
 $b_n = \frac{2}{\pi \pi} \int_{0}^{L} [b \sin x + 2b \sin 2x] \leq h(hx) dx$
 $b_n = \frac{2}{\pi \pi} \int_{0}^{L} [b \sin x + 2b \sin 2x] \leq h(hx) dx$
 $b_n = \frac{2}{\pi \pi} \int_{0}^{L} [b \sin x + 2b \sin 2x] \leq h(hx) dx$
 $b_n = \frac{2}{\pi \pi} \int_{0}^{L} [b \sin x + 2b \sin 2x] \leq h(hx) dx$
 $b_n = \frac{2}{\pi \pi} \int_{0}^{L} [b \sin x + 2b \sin 2x] \leq h(hx) dx$
 $b_n = \frac{2}{\pi \pi} \int_{0}^{L} [b \sin x + 2b \sin 2x] \leq h(hx) dx$
 $b_n = \frac{2}{\pi \pi} \int_{0}^{L} [b \sin x + 2b \sin 2x] \leq h(hx) dx$
 $b_n = \frac{2}{\pi \pi} \int_{0}^{L} [b \sin x + 2b \sin 2x] \leq h(hx) dx$
 $b_n = \frac{2}{\pi \pi} \int_{0}^{L} [b \sin x + 2b \sin 2x] \leq h(hx) dx$
 $b_n = \frac{2}{\pi \pi} \int_{0}^{L} [b \sin x + 2b \sin 2x] \leq h(hx) dx$
 $b_n = \frac{2}{\pi \pi} \int_{0}^{L} [b \sin x + 2b \sin 2x] = \frac{2}{\pi \pi} \int_{0}^{L} [b \sin x + 2b \sin 2x] = \frac{2}{\pi} \int_{0}^{L} [b \sin x + 2b \sin 2x] = \frac{2}{\pi} \int_{0}^{L} [b \sin x + 2b \sin 2x] = \frac{2}{\pi} \int_{0}^{L} [b \sin x + 2b \sin 2x] = \frac{2}{\pi} \int_{0}^{L} [b \sin x + 2b \sin 2x] = \frac{2}{\pi} \int_{0}^{L} [b \sin x + 2b \sin 2x] = \frac{2}{\pi} \int_{0}^{L} [b \sin x + 2b \sin 2x] = \frac{2}{\pi} \int_{0}^{L} [b \sin x + 2b \sin 2x] = \frac{2}{\pi} \int_{0}^{L} [b \sin x + 2b \sin 2x] = \frac{2}{\pi} \int_{0}^{L} [b \sin x + 2b \sin 2x] = \frac{2}{\pi} \int_{0}^{L} [b \sin x + 2b \sin 2x] = \frac{2}{\pi} \int_{0}^{L} [b \sin x + 2b \sin 2x] = \frac{2}{\pi} \int_{0}^{L} [b \sin x + 2b \sin 2x] = \frac{2}{\pi} \int_{0}^{L} [b \sin x + 2b \sin 2x] = \frac{2}{\pi} \int_{0}^{L} [b \sin x + 2b \sin 2x] = \frac{2}{\pi} \int_{0}^{L} [b \sin x + 2b \sin 2x] = \frac{2}{\pi} \int_{0}^{L} [b$

$$SO = b. Sin x as(cf) + 2b Sin(2x) as(2cf) + 2 Sin x Sin(cf)$$

PS 6 Q 8:
• We differentiate ECUICH) with respect to t
and get

$$\frac{d}{dt} \equiv CuICt$$

= $\frac{d}{dt} \equiv \int_{-\infty}^{\infty} [Ut^{2} + \partial^{2}Ux^{2}] dx$
= $\frac{d}{dt} \equiv \int_{-\infty}^{\infty} [Ut^{2} + \partial^{2}Ux^{2}] dx$ Use $\frac{d}{dt} = Ut^{2} + \partial^{2}Ux^{2} + \partial^{2}Ux^{$

$$= \int_{-\infty}^{\infty} 0^{\circ} \text{ (It - Cult Cusing the PDE} = \int_{-\infty}^{\infty} 0^{\circ} \text{ (It - Cult Utt - \partial^{\circ} Utt = Cult Utt - \partial^{\circ} Utt = Cult Utt - \partial^{\circ} Utt = Cult Utt - \partial^{\circ} Utt^{\circ} = Cult - \partial^{\circ} Utt^{\circ$$

Namely
$$V_{x} \equiv 0$$
 and $V_{t} \equiv 0$.
 $V(c_{x},t) \equiv \int_{0}^{t} V_{t}(c_{x},s)ds + V(c_{x},s)$
 $= 0 + 0 \equiv 0$
So $V \equiv 0$ and thus $U_{1} \equiv U_{2}$
and the solution to $C(x)$ is unique

Solution to PS6 Q.7:
Show that the dergy of the solution
$$U(x,t)$$
 to the
ponblem $U(t, -c^2 U(x, =0, x, 70, t, 70))$
 $U(0,t) = 0$ (XX)
 $U(x,0) = f(x)$, $U(t, x,0) = f(x)$
for the wave equation on half line is Governed.
Assuming f, g are compact support, use the conservation
of energy to show uniqueness of solutions.

The Energy Eta](6) =
$$\int_{0}^{\infty} (\pm 4t^{2} \pm c^{2} dx^{2}) dx$$

has fine derivating
 $\frac{d}{dt} E Curret = \int_{0}^{\infty} (\pm -24t 4t + \pm c^{2} + 2dx 4t) dx$
 $= \int_{0}^{\infty} 4t \cdot 4t 4dx + c^{2} 4x 4t \Big|_{0}^{\infty} - \int_{0}^{\infty} c^{2} 4dx + 4dx$
(2ntegration by parts)
The bundary condition gives $(4t(0,t) = dt 4t(0,t) = 0)$
The condition of corport support gives $(4t, 4t + 5) = 0$

So $\frac{d}{dt} \in \mathbb{D}(\mathbb{I}(t)) = \int_{0}^{\infty} U_{t} \cdot (U_{t} - c^{2}U_{x}) dx$ by the $= \int_{0}^{\infty} (t \cdot 0) dx$ so Energy is conserved. Next, 2f. U, and Uz are 2 solutions to (++) then W=UI-Uz is a solution to $\mathcal{M}(x_0)=0, \ \mathcal{M}(x_0)=0$ Noticing EEWJ (0)=0, the preservation of energy implies ECWJCE) =0 frall t. so $W_{t} \equiv 0$, and thus $M(x+f) = \sum_{i=1}^{n} M(cx+f) + M(cx+g) = 0 + 0 = 0$ Thus $U_1 - U_2 \equiv 0$ and $U_1 \equiv U_2$. The solution is unique.

