

Group Theory

Week 6, Lecture 1, 2&3

Dr Lubna Shaheen

Table of Contents

- Commutator subgroups
- 2 Homomorphisms and Isomorphisms
- 3 First Isomorphisms Theorem
- **4** Second Isomorphism Theorem
- 5 Third Isomorphism Theorem
- 6 Revision: Week 1- Week 5 content

Revision: Commutator subgroups

Revision: Commutator subgroups

Definition

Suppose G, H are groups.

- A **homomorphism** from G to H is a function $\phi: G \to H$ such that $\phi(fg) = \phi(f)\phi(g)$ for all $f, g \in G$.
- ullet An **isomorphism** from G to H is a homomorphism which is also a bijection.
- G, H are **isomorphic** (written $G \cong H$) if there is at least one isomorphism from G to H.

Examples:

Examples:

Lemma

Suppose G, H are groups and $\phi: G \to H$ is a homomorphism. Then $\phi(1) = 1$, and $\phi(g^{-1}) = (\phi(g))^{-1}$ for every $g \in G$.

Exercise

If $\phi: G \to H$ is an isomorphism then $\phi^{-1}: H \to G$ is an isomorphism too.

Definition

Suppose $\phi: G \to H$ is a group homomorphism. The **image** of ϕ is the set $\operatorname{im} \phi = \{\phi(g) \mid g \in G\}$. The **kernel** of ϕ is the set $\ker \phi = \{g \in G : \phi(g) = 1\}$.

Examples:

Lemma

Suppose $\phi: G \to H$ is a group homomorphism. Then ϕ is injective if and only if $\ker \phi = \{1\}$.

Isomorphism Theorem

First Isomorphism Theorem

Suppose G,H are groups and $\phi:G\to H$ is a homomorphism. Then

- \bullet im $\phi \leq H$,
- $extbf{@}$ $ker\phi extbf{$\supseteq$} G$, and

Isomorphism Theorem

proof:

First Isomorphism Theorem

Example: Det: $GL_n(F) \to F^{\times}$ induces an isomorphism $GL_n(F)/SL_n(F) \cong F^{\times}$

Second Isomorphism Theorem

Second Isomorphism Theorem

Suppose G is a group, $H \supseteq G$, $K \supseteq G$ and $K \subseteq H$. Then

- K ≥ H,
- \bigcirc $H/K \supseteq G/K$, and
- $(G/K)/(H/K) \cong G/H.$

Second Isomorphism Theorem

For the next isomorphism theorem, recall the product

$$HN = \{hn|h \in H, n \in N\}.$$

Third Isomorphism Theorem

Suppose G is a group, $H \leq G$ and $N \supseteq G$. Then

- \bullet $N \geq HN$,
- \bullet $H \cap N \supseteq H$, and

Revision: Exams Style Questions

Revision: Exams Style Questions

Exams Style Questions

Question: Let $\phi: G_1 \rightarrow G_2$ a homorphism.

- (i) If $H_2 \supseteq G_2$, then $\phi^{-1}(H_2) \supseteq G_1$.
- (ii) If $H_1 \supseteq G_1$ and ϕ is an epimorphism then $\phi(H_1) \supseteq G_2$.

Proof (i) If $x \in \phi^{-1}(H_2)$ and $a \in G_1$, then $\phi(x) \in H_2$ and so $\phi(axa^{-1}) = \phi(a)\phi(x)\phi(a)^{-1} \in H_2$ since H_2 is normal. We conclude $axa^{-1} \in \phi^{-1}(H_2)$. (ii) Since H_1 is normal, we have $\phi(a)\phi(H_1)\phi(a)^{-1} \subseteq \phi(H_1)$. Since we assume ϕ is surjective, every $b \in G_2$ can be written as $b = \phi(a)$, $a \in G_1$. Therefore $b\phi(H_1)b^{-1} \in \phi(H_1)$.

Remarks: Note that with the choice $H_2 = \{e\}$ the theorem says that $ker \phi \supseteq G_1$.

QMplus Quiz

Attempt Quiz 6 at QMplus page

Some Useful Notations

Throughout this course, we use the following notation.

- C_n denotes the cyclic group of order n.
- Klein group often symbolized by the letter \mathcal{V}_4 or as $\mathcal{K}_4 = \mathbb{Z}_4 \times \mathbb{Z}_4$ denotes the group $\{1, a, b, c\}$, with group operation given by

$$a^2 = b^2 = c^2 = 1$$
, $ab = ba = c$, $ac = ca = b$, $bc = cb = a$.

• U_n is the set of integers between 0 and n which are prime to n, with the group operation being multiplication modulo n.

Some Useful Notations

• \mathcal{D}_{2n} is the group with 2n elements

1,
$$r$$
, r^2 , ..., r^{n-1} , s , rs , r^2s , ..., $r^{n-1}s$.

The group operation is determined by the relations $r^n = s^2 = 1$ and $sr = r^{n-1}s$.

- S_n denotes the group of all permutations of $\{1, \ldots, n\}$, with the group operation being composition.
- $GL_n(\mathbb{R})$ is the group of $n \times n$ invertible matrices with entries in \mathbb{R} , with the group operation being matrix multiplication.
- Q_8 is the group $\{1, -1, i, -i, j, -j, k, -k\}$, in which

$$i^2 = j^2 = k^2 = -1$$
, $ij = k$, $jk = i$, $ki = j$, $ji = -k$, $kj = -i$, $ik = -j$.