
WEEK 6 NOTES

1. INHOMOGENEOUS WAVE EQUATIONS: WAVE EQUATIONS WITH A SOURCE

1.1. Inhomogeneous wave equations on the real line. We consider in this subsection the
following initial value problem for inhomogeneous wave equation on the real line R.

Utt − c2Uxx = ψ(x)

U(x, 0) = f(x)

Ut(x, 0) = g(x).

(1.1)

This is the mathematical model for the evolution of a vibrating string with a source of
external force acting on it.

We will first apply the Principle of Superposition from the notes of Week 1.
Consider the following 2 equations:

Vtt − c2Vxx = 0

V (x, 0) = f(x)

Vt(x, 0) = g(x),

(1.2)

and 
Wtt − c2Wxx = ψ(x)

W (x, 0) = 0

Wt(x, 0) = 0.

(1.3)

We observe that: if V is a solution to (1.2) and W is a solution to (1.3), then U = V +W
is a solution to (1.1).

By the D’Almbert’s formula from Week 4, we get a solution V to (1.2) by

V (x, t) =
1

2
[f(x+ ct) + f(x− ct)] +

1

2c

∫ x+ct

x−ct

g(s)ds.

So we are left to solve (1.3), whose solution is given by the following Theorem called the
Duhamel’s Principle.

Theorem 1.1 (Duhamel’s Principle on R). If W̃ is a solution to the equation
W̃tt − c2W̃xx = 0

W̃ (x, 0) = 0

W̃t(x, 0) = ψ(x),

(1.4)

then

W (x, t) =

∫ t

0

(W̃ (x, t− s))ds(1.5)

is a solution to (1.3)
1
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Proof. We differentiate W with respect to t once and get

∂

∂t
W (x, t) =

∂

∂t

∫ t

0

(W̃ (x, t− s))ds

=W̃ (x, t− s)|s=t +

∫ t

0

(W̃t(x, t− s))ds

=W̃ (x, 0) +

∫ t

0

(W̃t(x, t− s))ds

=

∫ t

0

(W̃t(x, t− s))ds.

Differentiating with respect to t again, we get

∂2

∂t2
W (x, t) =

∂

∂t

∫ t

0

(W̃t(x, t− s))ds

=W̃t(x, t− s)|s=t +

∫ t

0

(W̃tt(x, t− s))ds

=W̃t(x, 0) +

∫ t

0

(W̃tt(x, t− s))ds

=ψ(x) +

∫ t

0

(W̃tt(x, t− s))ds.

Similarly, differentiating with respect to x twice, we get

∂2

∂x
W (x, t) =

∂2

∂x2

∫ t

0

(W̃ (x, t− s))ds

=

∫ t

0

(W̃xx(x, t− s))ds.

So combining these, we get

Wtt − c2Wxx =ψ(x) +

∫ t

0

(W̃tt(x, t− s))ds−
∫ t

0

(W̃xx(x, t− s))ds

=ψ(x) +

∫ t

0

[W̃tt − c2W̃xx](x, t− s)ds

=ψ(x),

where we used that W̃ satisfies W̃tt − c2W̃xx = 0.
Moreover, at time t = 0, the initial values of W satisfy

W (x, 0) =

∫ 0

0

(W̃ (x, t− s))ds = 0

Wt(x, 0) =

∫ 0

0

(W̃t(x, t− s))ds = 0.

□

On the other hand, we know the solution to (1.4) is given by D’Alembert’s formula as
follows

W̃ (x, t) =
1

2c

∫ x+ct

x−ct

ψ(r)dr.
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So, using the Duhamel’s principle, we have

W (x, t) =
1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)

ψ(r)drds.

Combining with our earlier observation using the principle of superposition, the solution
to (1.1) is then

U(x, t) =V (x, t) +W (x, t)

(1.6)

=
1

2
[f(x+ ct) + f(x− ct)] +

1

2c

∫ x+ct

x−ct

g(s)ds+
1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)

ψ(r)drds.

Example 1.2. Solve the following inhomogeneous wave equation on the real line.
Utt − c2Uxx = cosx

U(x, 0) = −1

Ut(x, 0) = 1

We can apply the formula (1.6) with ψ(x) = cosx, f(x) = −1, g(x) = 1.

U(x, t) =
1

2
[f(x+ ct) + f(x− ct)] +

1

2c

∫ x+ct

x−ct

g(s)ds+
1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)

ψ(r)drds

=
1

2
[−1− 1] +

1

2c

∫ x+ct

x−ct

1ds+
1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)

cos rdrds

=− 1 +
2ct

2c
+

1

2c

∫ t

0

[sin(x+ ct− cs)− sin(x− ct+ cs)]ds

=− 1 + t+
1

2c

1

−c
[− cos(x+ ct− cs)]|t0 −

1

2c

1

c
[− cos(x− ct+ cs)]|t0

=− 1 + t+
cosx

c2
− cos(x+ ct) + cos(x− ct)

2c2

1.2. Inhomogeneous equations on a finite interval. Consider the following inhomoge-
neous wave equation for a vibrating string of finite length L and 2 fixed ends, a forcing
term of ψ and zero initial position and velocity

Wtt − c2Wxx = ψ(x), x ∈ [0, L]

W (0, t) = 0,W (L, t) = 0

W (x, 0) = 0,Wt(x, 0) = 0.

(1.7)

Theorem 1.3 (Duhamel’s Principle on interval). If W̃ is a solution to the equation
W̃tt − c2W̃xx = 0

W̃ (0, t) = 0, W̃ (L, t) = 0

W̃ (x, 0) = 0, W̃t(x, 0) = ψ(x),

(1.8)

then

W (x, t) =

∫ t

0

(W̃ (x, t− s))ds(1.9)

is a solution to (1.7)
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The proof is similar to that of the proof of Theorem 1.1, we leave it as an exercise.
Using the principal of superposition and Theorem 1.3, we can again deduce as in the

previous subsection the solutions to the inhomogeneous wave equations on the interval
with arbitrary initial values.

The solutions to 
Utt − c2Uxx = ψ(x), x ∈ [0, L]

U(0, t) = 0, U(L, t) = 0

U(x, 0) = f(x), Ut(x, 0) = g(x).

(1.10)

Then U(x, t) = V (x, t) +W (x, t) where V solves
Vtt − c2Vxx = 0, x ∈ [0, L]

V (0, t) = 0, V (L, t) = 0

V (x, 0) = f(x), Vt(x, 0) = g(x).

(1.11)

andW solve (1.7), both of which can be solved using the method of separation of variables
in the last week.

Example 1.4. Solve the inhomogeneous equation on the interval
Utt − Uxx = − sin(6x), x ∈ [0, 2π]

U(0, t) = 0, U(2π, t) = 0

U(x, 0) = 0, Ut(x, 0) = 0

.(1.12)

To solve the inhomogeneous equation, we first consider the following homogenous equa-
tion 

W̃tt − W̃xx = 0

W̃ (0, t) = 0, W̃ (2π, t) = 0

W̃ (x, 0) = 0, W̃t(x, 0) = − sin(6x),

(1.13)

Using the theory of separation of variables from last week (equation (1.2) in Week 5 notes
with L = 2π and c = 1), we know that the solutions to this homogenous equation is

W̃ (x, t) =

∞∑
n=1

an sin
nπx

2π
cos

nπt

2π
+ bn sin

nπx

2π
sin

nπt

2π

=

∞∑
n=1

an sin
nx

2
cos

nt

2
+ bn sin

nx

2
sin

nt

2
,

where

an =
2

2π

∫ 2π

0

0 · sin nx
2

= 0,∀n.

and

bn =
2

nπ

∫ 2π

0

[− sin(6x)] · sin nx
2

=

{
0, n ̸= 12
2

12π · (−π), n = 12

So an = 0 for all n, bn = 0 for all n except for n = 12, b12 = − 1
6 . Thus

W̃ (x, t) = −1

6
sin(6x) sin(6t).
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By the Duhamel’s principle on the interval Theorem 1.3, we then have solution to (1.12) is

U(x, t) =

∫ t

0

W̃ (x, t− s)ds

=

∫ t

0

−1

6
sin(6x) sin[6(t− s)]ds

=
1

36
sin(6x) cos[6(t− s)]|t0

=− 1

36
sin(6x) +

1

36
sin(6x) cos(6t).

2. BASIC IDEAS OF ELLIPTIC EQUATIONS

In this part of the course we will study the properties of elliptic equations in two dimen-
sions (spatial). More precisely, we will look at the Laplace equation

Uxx + Uyy = 0,

and the Poisson equation
Uxx + Uyy = f(x, y).

The Poisson equation is the inhomogeneous version of the Laplace equation.
Typically we will be interested in the so-called Dirichlet problem in which we solve

the Laplace equation on a domain Ω ⊂ R2 given that the value of U on the boundary ∂Ω
of Ω is known.

Ω

∂Ω

∆U(x,y)=0

U(x,y)=f(x,y)

Notation. In what follows we write

∆U = Uxx + Uyy.

The physicists notation is
∇2U = Uxx + Uyy.

The operator ∆ (∇2) is called the Laplacian. The reason for the physicists notation is that
the Laplacian is the divergence of the gradient of a function ∆U = ∇ · ∇U .

The Laplace and Poisson equations arise from applications in physics (electrostatics,
Newtonian gravity), fluid flows (steady state), soap films, elastic membranes, and also in
pure mathematics (complex variables). As examples consider the wave equation in 1 + 2
dimensions

Utt = c2(Uxx + Uyy)
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and the 1 + 2 heat equation
Ut = κ(Uxx + Uyy).

For both of these equations it is of interest to look for solutions which are independent of
time —i.e. Ut = 0. These solutions describe the asymptotic behaviour —i.e. at late
times. This is a statement that is hard to show and that is at the forefront of modern pde
research.

2.0.1. Harmonic functions.

Definition 2.1. A function having second partial derivatives on a domain Ω ⊂ R2 is called
harmonic if ∆U = 0 for all (x, y) ∈ Ω.

Example 2.2.
(i) the function U(x, y) = x+ y is harmonic for all Ω ⊂ R2;

(ii) similarly for the function U(x, y) = x2 − y2;
(iii) the function U(x, y) = ln(x2 + y2) for any domain Ω not containing the origin as

the function U(x, y) is not defined there.

2.0.2. Relation to complex variables. Let f(z) = u(x, y)+iv(x, y) be an analytic function
with z = x+ iy. To verify that the function f(z) is analytic on a domain Ω one can make
use of the Cauchy-Riemann equations:

vy = ux,(2.1a)
vx = −uy.(2.1b)

Applying ∂/∂y to equation (2.1a) one has that

vyy = uxy = −vxx
where the second equality follows from (2.1b). Thus, one has that

vxx + vyy = 0,

that is, the imaginary part of analytic function is harmonic. A similar relation follows for
the real part u.

Note. This observation indicates a very deep connection between pde’s and complex vari-
ables!

3. LAPLACE EQUATION IN POLAR COORDINATES

Before studying the general properties of the Laplace and Poisson equations, let us
consider some explicit solutions using separation of variables.

3.1. Separation of variables in polar coordinates. The method of separation of vari-
ables can be used to find solutions to the Laplace equation in settings with circular sym-
metry —i.e. a disk or an annulus.

Given the polar coordinates (r, θ) given by

x = r cos θ, y = r sin θ,

the Laplacian can be expressed as

∆U =
∂2U

∂r2
+

1

r

∂U

∂r
+

1

r2
∂2U

∂θ2
.
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Consider the boundary value problem for the Laplace equation in which the value of the
solution is given on a circumference of a disk of radius r∗ —namely,

∆U =
1

r

∂

∂r

(
r
∂U

∂r

)
+

1

r2
∂2U

∂θ2
= 0,

U(r∗, θ) = f(θ),

see the figure below:

r*∆U=0

U(r*,θ)=f(θ)

Our task is to find the solution U(r, θ) in the interior of the circumference (disk). Fol-
lowing the general strategy of the method of separation of variables we look for solutions
of the form

U(r, θ) = R(r)Θ(θ).

Plugging into the Laplace equation in polar coordinates one obtains the expression

ΘR′′ +
1

r
ΘR′ +

1

r2
RΘ′′ = 0.

Dividing the above expression by RΘ/r2 and rearranging one finds that

r2R′′

R
+
rR′

R
= −Θ′′

Θ
.

The left hand side of the above expression depends only on r while the right hand side only
on θ. Thus, each must be equal to some separation constant k —namely:

r2R′′

R
+
rR′

R
= k, −Θ′′

Θ
= k,

or

r2R′′ + rR′ − kR = 0,

Θ′′ + kΘ = 0.

The Θ-equation. This equation is used to set the value of k. Observe that we need periodic
solutions so k > 0. In the following we write k = m2. Then

Θ(θ) = A cosmθ +B sinmθ.

To enforce periodicity we require that

U(r, θ) = U(r, θ + 2π),

Uθ(r, θ) = Uθ(r, θ + 2π).

Observing that
cosm(θ + 2π) = cos(mθ + 2πm) = cosmθ

if m ∈ N (and similarly for sinmθ) then m ∈ N.
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The R-equation. Following the previous discussion one has that the equation for R(r)
takes the form

r2R′′ + rR′ −m2R = 0.

We look for solutions to this equations of the form

R(r) = rα,

for some constant α. It follows then that

α(α− 1)rα + αrα −m2rα = 0

so that
(α2 −m2)rα = 0.

Hence, α2 = m2 —that is,
α = ±m.

So the general solution for the R equation is

R(r) = Cmr
m +

Dm

rm
.

For m = 0 one needs to do more work as there must be two independent solutions. In that
case one has the equation

r2R′′ + rR′ = 0.

If r ̸= 0 the latter implies

r
dR′

dr
+R′ =0

[rR′]′ =0.

Integrating both sides give

rR′(r) =D0

R′(r) =
D0

r
,

from where a further integration gives

R(r) = C0 +D0 ln r.

The general solution. Combining the whole of the previous discussion one finds that the
general solution to the Laplace equation in polar coordinates is given by

(3.1) U(r, θ) =

(
C0 +D0 ln r

)
+

∞∑
m=1

(
Cmr

m +
Dm

rm

)
(Am cosmθ +Bm sinmθ).


