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Mid-Term Test 1

Question 1.

Suppose f : R→ R is defined by f(x) = x2 − 6.

(a) Find all fixed points of f , and determine whether they are attracting or repelling.

(b) Determine the points of least period 2 for f .

[25 marks]

Answer 1.

(a) The fixed points are 3 and −2, the unique solutions of

0 = f(x)− x = x2 − x− 6 = (x− 3)(x+ 2) .

Both points are repelling, since f ′(x) = 2x, so |f ′(3)| = 6 > 1, and |f ′(−2)| = 4 > 1.

(b) The points of least period 2 are (−1 +
√
21)/2 and (−1−

√
21)/2.

These are the roots of the quadratic q(x) = x2 + x− 5, and we note the factorisation

f 2(x)− x = (x2− 6)2− 6 = x4− 12x2− x+30 = (x2− x− 6)(x2 + x− 5) = (f(x)− x)q(x) .
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Answer 1. (Continue)



Mid-Term Test 3

Question 2.

Determine the basin of attraction for the fixed point 1 of the map f : R → R defined by
f(x) = x2 − 2x+ 2.

[15 marks]

Answer 2.

The basin of attraction is the open interval (0, 2).

Note that f(x) = (x− 1)2 +1, so if x ∈ (0, 2) then the distance between 1 and fn(x) decreases
monotonically to limit 0.

If |x− 1| > 1 then fn(x)→∞ as n→∞.

The point 2 is a repelling fixed point, and the point 0 satisfies f(0) = 2, and therefore fn(0) = 2
for all n ≥ 1.

(Note that this example resembles the case g(x) = x2 studied in lectures - in fact f and g are
topologically conjugate, via the homeomorphism h(x) = x− 1).
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Answer 2. (Continue)



Mid-Term Test 5

Question 3.

Suppose f : R→ R is C1, and that {x0, x1, x2, x3, x4, x5} is a 6-cycle with f ′(xi) = (−2)i−3 for
0 ≤ i ≤ 5. Determine, with justification, whether this cycle is attracting or repelling.

[15 marks]

Answer 3.

The cycle is attracting.

Justification: The multiplier (f 6)′(x0) =
∏5

i=0 f
′(xi), and we have that |f ′(x0)| = 1/8, |f ′(x1)| =

1/4, |f ′(x2)| = 1/2, |f ′(x3)| = 1, |f ′(x4)| = 2, |f ′(x5)| = 4, so

|(f 6)′(x0)| =
5∏

i=0

|f ′(xi)| =
1

8
× 1

4
× 1

2
× 1× 2× 4 =

1

8
< 1 ,

therefore by a result from the module we know this 6-cycle is attracting.
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Answer 3. (Continue)



Mid-Term Test 7

Question 4.

Suppose the diffeomorphism f : R → R is defined by f(x) = 1− x + 1
2
cosx. How many fixed

points does f have? Justify your answer.

[15 marks]

Answer 4.

f has exactly one fixed point, since it is order-reversing (recall that all order-reversing diffeomor-
phisms have precisely one fixed point).

To see that f is order-reversing, note that f ′(x) = −1− 1
2
sinx ≤ −1/2 < 0 for all x ∈ R.
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Answer 4. (Continue)



Mid-Term Test 9

Question 5.

Determine those natural numbers n such that every continuous function f : R → R with an
n-cycle also has an n2-cycle.

[15 marks]

Answer 5.

The set of such numbers is
N \ {2k : k ≥ 1} .

To see this, note first that if n = 1 then n2 = 1, so clearly every continuous function f : R→ R
with a 1-cycle also has a 1-cycle.

Next note that if n has some factor apart from 2 (i.e. n 6= 2k for k ≥ 1) then n2 is smaller
than n in the Sharkovskii order, so Sharkovskii’s Theorem tells us that every continuous function
f : R→ R with an n-cycle also has an n2-cycle.

Finally note that if n = 2k for some k ≥ 1 then n2 is larger than n in the Sharkovskii order, so it
is not the case that every continuous function f : R→ R with an n-cycle also has an n2-cycle.
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Answer 5. (Continue)



Mid-Term Test 11

Question 6.

Let f : R → R and g : R → R be defined by f(x) = x3 and g(x) = −x3. Are f and g
topologically conjugate to each other? Justify your answer.

[15 marks]

Answer 6.

No, f and g are not topologically conjugate.

To see this, note that f has 3 fixed points and g only has one fixed point, whereas if they were
topologically conjugate then they would have the same number of fixed points.

The 3 fixed points of f are 0, 1, and−1 (i.e. the three roots of f(x)−x = x3−x = x(x−1)(x+1).
The single fixed point of g is 0 (note that g(x)− x = −x3 − x = −x(x2 + 1) only has one real
root).
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Answer 6. (Continue)


