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Group Theory

Week 5, Lecture 1, 2& 3

Dr Lubna Shaheen
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Conjugate subgroups seef congud riwer | i Ao,
Definition
Suppose G is a group, H < G and g € G. Define ‘
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gHg ' = {ghg 'lh € H}
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Conjugate subgroups g IRy v
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Conjugate subgroups

Lemma

Suppose G is a group, H < G and g € G. Then gHg ! is a subgroup of G.
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Conjugate subgroups

Definition: Suppose G is a group, and H, K < G. We say that H and K are
conjugate if K = gHg ! for some g € G.

Conjugacy is an equivalence relation on the set of subgroups of G.
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Conjugate subgroups
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Normal Subgroups and Quotient Groups (/5)(/) =3 v
Definition ‘ .
Suppose G is a group and N < G. We say N is normal in G if Ly c”y‘l’ﬁ e

NS

to obself
gng_1 eN forall ne N and g € G. & G

We write N > G to mean that N is a normal subgroup of G. We use the symbols
—n—— .
>, <, >, < In the obvious way.

Note that if N> G, then gNg~! = N for every g € G. In other words, the only
subgroup of G conjugate to N is N itself.
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Normal Subgroups and Quotient Groups C[ Co,,J a.?
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A subgroup is normal if and only if it is a union of conjugacy classes. J
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Normal Subgroups and Quotient Groups

L‘olwllﬁ Loment 8 4@:7/3 @nj;ﬁqﬁe />
Jééeﬁ

cc/((/zmt()) = ? (13)(24), (L%)(23), (,2)(},/{{2

Ve clief U chgffz)(sw}
[{erel /\/o(rﬂ’u.ﬁ



Normal Subgroups and Quotient Groups

Lemma v v J

Suppose G is a group and N < G, and that |G : N| =2. Then N> G.
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Normal Subgroups and Quotient Groups N s n’w'ff""-ﬂuﬂ

Lemma V-V Qep J

Suppose G is a group and N < G is normal if and only if the right cosets coincide with

the left cosets. —
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Normal Subgroups and Quotient Groups V- \"ﬁﬂp

Definition
Suppose G is a group and N> G. The quotient group G/N is the set of all cosets of
N, with group operation (N/\?r) (A/f;) =N ,ﬁ,_

)(Nh) = Ngh.

G
Claim: The group operation > is well defined. Nj) /\/b é /N
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Normal Subgroups and Quotient Groups
Proposition

Suppose G is a group and N> G. The quotient G/N is a group with operation

(Ng)(Nh) = Ngh. V-V 9""P
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Normal Subgroups and Quotient Groups N7 =nN ,‘alen/f:%?

Lemma

Suppose G is a finite group and N> G. Then |G/N| = |G|/|N|. J
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Normal Subgroups and Quotient Groups

Rev csion: Campub + : FF-BFP —B2
/\/a-/mwj cg‘[@"wf" Nd&
. Y heG hNHE- fbnb-"“"}
Bubgaocp 6 =
S 6"//\/ 7[010" a gffﬁ"/?



Normal Subgroups and Quotient Groups
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Products of groups
Definition v VvV
Suppose G is a group and H, N < G. Define

HN = {hn|h € H, n€ N}.

You might hope that if H and N are subgroups of G then so is HN. But in fact this is
T ——
not the case.
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Products of groups

Proposition
Suppose G is a group, H < G and N> G. Then HN < G. If in addition H> G, then
HN > G.
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Products of groups
Definition
Suppose G, H are groups. The direct product G x H is the set

GicH = (e hlge 6, heHj

with group operation
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Products of groups

Example




Centralizer subgroups ~
Definition Cé (”)c {j é&? : /I/a, j@; }
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Claim: Cg(A) < G.
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Commutator subgroups E'I(’ﬁ}:!_j j{v./af-l .

Definition

Suppose G is a group and f,g € G. The commutator of f and g (written [f, g]) is
the element fgf ~*g~!. The commutator subgroup G’ (also called the derived
subgroup) is the subgroup of G generated by all the commutators in G.

’
. G LG
Proposition
Suppose G is a group. Then G' > G.
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Suppose G is a group and N> G. Then G/N is abellan if and only if G’ C N.
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Exams Style Questions
Normal Subgroup

Lemma

Let G be a finite group and let H < G. Show that for every g € G, the set

gHg™! = {ghg™' : h € H} is a subgroup of G. Now explain briefly why the following
, then H must be

normal in G.nZ ~
—~——

Solution: Fix g € G. To show that gHg ! is a subgroup of G it's sufficient to show that it is
nonempty, and that for every f, , € gHg ™! we have flfz_l € gHg'. To see the former we
just note that 1 = glg~!. To see the latter, let gh1g~ ", ghog * € gHg~!. We have

(ghag™ 1)t =gh, ‘g ! so ghig (ghag ') € gHg ™!, using the fact that hyhy ', If H is the
unique subgroup of G with Gardimanty [H], then for every g € G, gHg ! is a subgroup of G
with cardinality |H| and therefore must equal H. This implies that H is normal by the
definition of normality. (students should use the correct reasoning along these lines: the
equation |H| = |gHg ™| need not be proved.)
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Exams Style Questions = ﬁ A /7”(' y.—’é j Hﬁ "

Question: v
Consider the element r3 of the dihedral group D1g. Find the centraliser of r3 in
Solution: All rotations commute with r3 so the centraliser contains all five rotations
(including the identity). It follows by Lagrange's theorem that the centraliser either
consists only of rotations, or consists of all elements of Dyg. Since
r3s = sr=3 = sr? # sr3, 1 does not commute with s, so the centraliser is not the whole

of Dyo and therefore must be {Lr, r?,r3, rtl.

@ Now instead consider the element r* of the dihedral group Di,. Find the centraliser of r3
in D12.
Solution: All rotations commute with r3, so the centraliser has cardinality at least six.
Since in this group r3s = sr=3 = sr3, r3 commutes with s and therefore commutes with
all elements of Dy».

© Write down the centre of the group Dyg.
Solution: All rotations (except the identity) fail to commute with s, so the centraliser is

just {1}.
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Some Useful Notations

(Throughout this course, we use the following notation.
@ C, denotes the cyclic group of order n.

o Kilein group often symbolized by the letter V4 or as K4 = Z4 X Z4 denotes the
group {1, a, b, c}, with group operation given by

P =pr=c=1, ab=ba=c, ac=ca=b, bc=cb=a.

@ U, is the set of integers between 0 and n which are prime to n, with the group
operation being multiplication modulo n.

/27/



Some Useful Notations

@ Dy, is the group with 2n elements

1, r % .., Y os s, s, .., " ls

The group operation is determined by the relations r” = s> =1 and
sr=r""ls.

@ S, denotes the group of all permutations of {1,..., n}, with the group
operation being composition.

@ GL,(R) is the group of n x n invertible matrices with entries in R, with the
group operation being matrix multiplication.

e Qg is the group {1,—-1,/i,—i,j,—j, k,—k}, in which

P=P2=k>=-1, =k, jk=i, ki=], ji=—k, ki =—i, ik=—j.
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