

Group Theory

Week 5, Lecture 1, 2&3

Dr Lubna Shaheen

Table of Contents

- Conjugate subgroups
- **2** Normal Subgroups and Quotient Groups
- Products of groups
- 4 Centralizer subgroups
- **5** Commutator subgroups

Revision:

Definition

Suppose G is a group, $H \leq G$ and $g \in G$. Define

$$gHg^{-1} = \left\{ ghg^{-1} | h \in H \right\}$$

Example: $G = S_4$.

Lemma

Suppose G is a group, $H \leq G$ and $g \in G$. Then gHg^{-1} is a subgroup of G.

Definition: Suppose G is a group, and $H, K \leq G$. We say that H and K are **conjugate** if $K = gHg^{-1}$ for some $g \in G$.

Conjugacy is an equivalence relation on the set of subgroups of G.

Example: $G = S_4$.

Example: \mathcal{D}_8

Definition

Suppose G is a group and $N \leq G$. We say N is **normal** in G if

$$gng^{-1} \in N$$
 for all $n \in N$ and $g \in G$.

We write $N \supseteq G$ to mean that N is a normal subgroup of G. We use the symbols $\supseteq, \trianglelefteq, \triangleright, \lhd$ in the obvious way.

Note that if $N \supseteq G$, then $gNg^{-1} = N$ for every $g \in G$. In other words, the only subgroup of G conjugate to N is N itself.

Example:

Lemma

A subgroup is normal if and only if it is a union of conjugacy classes.

Lemma

Suppose G is a group and $N \leq G$, and that |G:N| = 2. Then $N \supseteq G$.

Lemma

Suppose G is a group and $N \leq G$ is normal if and only if the right cosets coincide with the left cosets.

Definition

Suppose G is a group and $N \supseteq G$. The **quotient group** G/N is the set of all cosets of N, with group operation

$$(Ng)(Nh) = Ngh.$$

Claim: The group operation \supseteq is well defined.

Proposition

Suppose G is a group and $N \supseteq G$. The **quotient** G/N is a group with operation

$$(Ng)(Nh) = Ngh.$$

Proof:

Lemma

Suppose G is a finite group and $N \supseteq G$. Then |G/N| = |G|/|N|.

Definition

Suppose G is a group and $H, N \leq G$. Define

$$HN = \{ hn | h \in H, n \in N \}.$$

You might hope that if H and N are subgroups of G then so is HN. But in fact this is not the case.

Proposition

Suppose G is a group, $H \leq G$ and $N \supseteq G$. Then $HN \leq G$. If in addition $H \supseteq G$, then $HN \supseteq G$.

Definition

Suppose G, H are groups. The **direct product** $G \times H$ is the set

$$\big\{(g,h)|g\in G,\ h\in H\big\}$$

with group operation

$$(g,h)(g',h')=(gg',hh').$$

Example

Centralizer subgroups

Definition

G is a group and $A \subseteq G$

$$C_G(A) = \{g \in G \mid \forall a \in A : gag^{-1} = a\}$$

Claim: $C_G(A) \leq G$.

Centralizer subgroups

Commutator subgroups

Definition

Suppose G is a group and $f,g \in G$. The **commutator** of f and g (written [f,g]) is the element $fgf^{-1}g^{-1}$. The **commutator subgroup** G' (also called the **derived subgroup**) is the subgroup of G generated by all the commutators in G.

Proposition

Suppose G is a group. Then $G' \supseteq G$.

Commutator subgroups

Proposition

Suppose G is a group and $N \supseteq G$. Then G/N is abelian if and only if $G' \subseteq N$.

Commutator subgroups

Examples

Exams Style Questions

Normal Subgroup

Lemma

Let G be a finite group and let $H \leq G$. Show that for every $g \in G$, the set $gHg^{-1} = \{ghg^{-1} : h \in H\}$ is a subgroup of G. Now explain briefly why the following result holds: if H is the only subgroup of G with cardinality |H|, then H must be normal in G.

Solution: Fix $g \in G$. To show that gHg^{-1} is a subgroup of G it's sufficient to show that it is nonempty, and that for every $f_1, f_2 \in gHg^{-1}$ we have $f_1f_2^{-1} \in gHg^{-1}$. To see the former we just note that $1 = g1g^{-1}$. To see the latter, let $gh_1g^{-1}, gh_2g^{-1} \in gHg^{-1}$. We have $(gh_2g^{-1})^{-1} = gh_2^{-1}g^{-1}$ so $gh_1g^{-1}(gh_2g^{-1})^{-1} \in gHg^{-1}$, using the fact that $h_1h_2^{-1}$. If H is the unique subgroup of G with cardinality |H|, then for every $g \in G, gHg^{-1}$ is a subgroup of G with cardinality |H| and therefore must equal H. This implies that H is normal by the definition of normality. (students should use the correct reasoning along these lines: the equation $|H| = |gHg^{-1}|$ need not be proved.)

Exams Style Questions

Question:

- ① Consider the element r^3 of the dihedral group \mathcal{D}_{10} . Find the *centraliser* of r^3 in \mathcal{D}_{10} .
 - **Solution**: All rotations commute with r^3 so the centraliser contains all five rotations (including the identity). It follows by Lagrange's theorem that the centraliser either consists only of rotations, or consists of all elements of \mathcal{D}_{10} . Since $r^3s=sr^{-3}=sr^2\neq sr^3$, r^3 does not commute with s, so the centraliser is not the whole of \mathcal{D}_{10} and therefore must be $\{1,r,r^2,r^3,r^4\}$.
- ② Now instead consider the element r^3 of the dihedral group \mathcal{D}_{12} . Find the *centraliser* of r^3 in \mathcal{D}_{12} .
 - **Solution**: All rotations commute with r^3 , so the centraliser has cardinality at least six. Since in this group $r^3s = sr^{-3} = sr^3$, r^3 commutes with s and therefore commutes with all elements of \mathcal{D}_{12} .
- Write down the centre of the group D₁₀.
 Solution: All rotations (except the identity) fail to commute with s, so the centraliser is just {1}.

QMplus Quiz

Attempt Quiz 5 at QMplus page

Some Useful Notations

Throughout this course, we use the following notation.

- C_n denotes the cyclic group of order n.
- Klein group often symbolized by the letter \mathcal{V}_4 or as $\mathcal{K}_4 = \mathbb{Z}_4 \times \mathbb{Z}_4$ denotes the group $\{1, a, b, c\}$, with group operation given by

$$a^2 = b^2 = c^2 = 1$$
, $ab = ba = c$, $ac = ca = b$, $bc = cb = a$.

• U_n is the set of integers between 0 and n which are prime to n, with the group operation being multiplication modulo n.

Some Useful Notations

• \mathcal{D}_{2n} is the group with 2n elements

1,
$$r$$
, r^2 , ..., r^{n-1} , s , rs , r^2s , ..., $r^{n-1}s$.

The group operation is determined by the relations $r^n = s^2 = 1$ and $sr = r^{n-1}s$.

- S_n denotes the group of all permutations of $\{1, \ldots, n\}$, with the group operation being composition.
- $GL_n(\mathbb{R})$ is the group of $n \times n$ invertible matrices with entries in \mathbb{R} , with the group operation being matrix multiplication.
- Q_8 is the group $\{1, -1, i, -i, j, -j, k, -k\}$, in which

$$i^2 = j^2 = k^2 = -1$$
, $ij = k$, $jk = i$, $ki = j$, $ji = -k$, $kj = -i$, $ik = -j$.