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Definition of Cosets

Definition

Let H be a subgroup of the group G whose operation is written multiplicatively
(juxtaposition denotes the group operation). Given an element g of G, the left cosets
of H in G are the sets obtained by multiplying each element of H by a fixed element g
of G (where g is the left factor).

gH = {gh‘:’ h an element of H} for g in G.
The right cosets are defined similarly, that is,

Hg = {hg: h an element of H} for g in G.
."
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Cosets: Example @;:Z/; é;é'} d, L5, /ézzg} e

Example Let G be the dihedral group of order six. Its elements may be represented by
{l,a,a% b,ab,ab}. In this group, a* = b = I and ba = a%b. This is enough information to

fill in the entire Cayley table:

« I | a a b ab
I I \a a* b  ab
a \a |a*> I |ab a°b
a2 &> I a |a*h b

b |b |a’h ab |I 4
ab ‘ab b a*b a I
a*b | a*h ab b |a* a

T= Z/,A

a’b

1
a-b

b"é H’Z/)

Let T be the subgroup {/, b}. The left cosets
of T are: IT =T = {I, b},
aT = {a73bT and 22 T = {22, ab}. The
right cosets of T are: T/ = T = {/, b},
Ta={a, ba} ={a,a b} and
Ta? = {a%, ba®} = {22, ab}.

, 4,48

Let H be the subgroup él a,a’}. The left
cosets of H are IH = H and

bH = {b, ba, ba®}. The right cosets of H are
Tl = H and Hb = {b, ab,a’b} = {b, ba®, ba}.
In this case, every left coset of H is also a
right coset of H? Why?

//L/) A’ /7 //L) 74L



Cosets: Example AT= 5/5»7 /Zé} llr; {/LZ) é:‘?i/éff

Example: Take G = S3, H = <(12)> = {id,(12)} and g = (23). Then
Hg = {(23),(123)}, gH = {(23), (132)}.

Remark:

(i) H is always a right coset of itself, since

H1 = {hllhe H} ={hlhe H} = H.
(ii) We can have Hf = Hg even when f # g.

For example, let G = Cg = {1,2,2%,23,z% z°}. Then H = {1,223} is a subgroup. We
have Hz = {z,z*}, and also Hz* = {z, z*}. We can see that Hf = Hg.

=



Cosets: Proposition

Proposition y‘téa““ﬁ

uppose G is a group, H< G and f,g € G.
1. |Hg| = |H|. —
2. If f € Hg, then Hf = Hg. v~
3. Each element of G is contained in exactly one right coset of H.

) G h— K7 W =4] wafgo%(,..za{
[/u a pJeofl




Cosets: /Proposition L{(A) = 55
2) fEHy => up- Hy
f= hiy PEH- o4 a=hF
hfeHf, hf—lgﬁg=/31'53€//j
it < H
geng Ig=144¢e #f
H 3 féé')
=5 chf'/f f fE Hf
Suppost £ € Hg, =%[Ff=4]

|E #




Cosets: Proposition CQX’? ly &rd’s ,Lg) J, é/j,llj) &%5}

Example
Take G = Dg and H = {1, rs}. Then the right cosets are
e
G(ZCQX H1={1,rs} v~ J'{i;é' £

Hr = {r, 5}‘/
Hr? = {r27 r35} v
Hr3 = {r, r’s}

H:A = Zg/aMf-/zs fé; 14/[}¢ {(LMJF

hét= £-478 = 4 _ 58

/’/‘/’}‘; 7M -/{/Lr: ‘l); U({'lf
/ /@z_é_-gz; ZA”&; s4-88"



Cosets: Coset Lemma

Coset lemma
Suppose G is a group, H < G and f,g € G. Then:

O HL= @fandonly.ffg cH: 2

i) fH = if and only if f~1g € H. v as¢

s Wy (=)
%:/-fé /-/75'-;//;
fohd => fg=heH

(& Jfer F=4fjen]
/Mm afrove Hf"’ H(?



Cosets

Proposition

If G is a group and H < G, then the number of right cosets of H is equal to the
number of left cosets of H.




Cosets ﬂmjfﬂét'om Ornt-onk.

. _pfH
upt=ug” U ;fi " )

Gij eolenty | by cosel Forrma
bi a%fmuf‘on 7[9 ﬁ €H
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Lagrange’s Theorem

Definition
Suppose G is a group and H < G. The index of H in G is the number of right cosets
of Hin G, written as |G : H|.

Lagrange's Theorem
Suppose G is a group and H < G. Then |G| = |H||G : H|. In particular, if G is finite
then |H| divides |G]|. -

% /6,;/,//24 Uee nog% é"y% Cosels
a%/,/m &, Zﬁ hane /ldf / H/




Proof of Lagrange’s Theorem

Go totall g of CoseEd Lopedt

Bacme ea_gé @W %G /Z)%

gw% ‘n OMMJO/



Lagrange’'s Theorem 37._ z ot3 £6,£9 - j
Example: G =17, H=3L.

N~ I ~——

[G:H|=[Z2:3Z]=3
The cosets of H in Z are of the form:

g+H={g+hheH}={g+3klkeZ}
where g € Z. ncke (_,?)
Thus the distinct cosets of 3Z in Z are: /6,7/’ //L// 5-/"’/

(i) 0+3Z = {0,3,6,9,--- }

(i) 14 3Z = {1,4,7,10,--- }
(ii) 2+ 3Z = {2,5,8,11,--- } (—k Countah

[6:#]=[Z:38]=3_ <font
cpgﬁ é/?ivﬁz)/Lz) 77) /ZA,([%,/CBJ}



Lagrange’s Theorem %r /Ls 40°

Example Dihedral group Dg: >J — con

Consider the dihedral group Dg , which represents the symmetries of a square. The
order of 8. The elements of Dg consist of 4 rotations and 4 reflections.

Let H={e,r, r?.r3, }, where e is the identity and r, r?, r3 are the rotations by 90°,
180°, and 270°. This is a subgroup of Dg (the group of rotations), and its order is 4
Since 4 divides 8, Lagrange’s Theorem holds for this example.

No of cosets of H in Dg are 2, which are

H=1{1,r,r* r3} and Hs = {s,rs,r’s, r’s}

Symmetric Group S3: Consider the symmetric group Ss, which is the group of all
permutations of 3 elements. The order of S3 is 6. The elements of S3 are:
Sz = {e,(12),(13),(23),(123),(132)}. Now, consider the subgroup H = je, (12)}.
This is a subgroup of 83, and the order of H is 2. According to Lagrange's Iheorem,
the order of H must divide the order of Sz, which is t(?Je. The list of right cosets of H is

/5/76 /H/"'—Z? =) 3%‘—‘45‘77/5 :

3 H = {e,(12)},{(13),(132)}, and {(23), (123)}
——



Corollary (12)-(13) = (3I % i)c(ISZ) R?M C o325

Corollary
Suppose G is a finite group and g € G. Then ord(g) divides |G|. J
el fosgy, Wil | ME90D]
H-(13)
[HI= 1437, b Faggeesped | =Jasy (520
Jheaer H- (23
044(4) )/&7/ = § 3, (/ﬁ)f




Euler’s Theorem owerl ble Aesccleal amod(n)

Applications in Number Theory

U, = (@nzy< Co-peom? €27

Invertible residues mod n. 2/( _ z f
|Un| = ®(n) = no of residues coprime to n. ”

—

Pick a residues x € U, it generates a cyclic subgroup
-
<X> — {1,X,X2, . .Xord(x)—l}
of order ord(g).
Ord(g) |0(n) = x®M) = 1. oo (1).

In other words
If x is coprime to n, then x®(") = 1 mod(n).




Euler’'s Theorem L]V/g)-’—/z /> g)f) 7}//’_[/

Example:

3* =81 =1 mod (8)
==

©(8) =1{1,3,5,7,}| =4
If n= pis prime, then (n) = p —1, XP~! = 1mod p < X — X is divisible by p.
For example X7 — X is divisible by 7, 27 —2 = 128 — 2 = 126 = 7.18.

v v S v

U8c§f>2>395/)7



Lagrange’s Theorem

Corollary: If g € G then or(g)||G].

/5,,/;/7/ (Vgn,&{i;{ﬂlzﬂw peumactation

Example

Sy is symmetric group. |S,| = nl.

ﬁﬂrfujanf

, A, =< S, group of even permutation.

[Sh:Ap =2

Which right cosets do we know. aﬂn ) O[],, [fz)f

A, all the even permutation

(Pr <&,
-

[ﬂn-’gr)/’z
/Anfgn//ﬂﬂ/ CosetofA,,(l

=n]

) = odd permutatlons

ISI

| Al

2=n)

j’@lw

[Sn: An] =




Conjugacy BF-B B'Ah (CMﬂpM M)

Definition
Suppose G is a group and f, g € G. We say that f is conjugate to g in G (written
f ~c g) if there is k € G such that kfk~1 = g.

potakor h L Bz pege 28 g n.

Lemma

Suppose G is a group then ~¢ is an equivalence relation.

~ - Qs-
Proof. o X o K ﬂ 3 f

O Reflexive: x zgxe__1 (9{)5) @a a x, =

@ Symmetric: x =gyg™! = y =g xg.
@ Transitive: xg_g?é_l and y = hzh™! — x = (gh)z(gh)™! ﬁ Z

(7(&2,{"1 ard] Y~ ) ’ (%) O
x=949= J(A7H )G

V.




Conjugacy



Conjugacy in Dg
Example: Dehidral group of order 8 In this case the conjugacy classes

correspond to “types of symmetry":
e r and r? are both 90° rotations;
@ r?is the only 180° rotation;
@ s and r?s are both reflections in axes parallel to the sides of the square;
e rs and r3s are both reflections in diagonals of the square.

Conjugacy classes in Dg [z_‘} 3 Ly /CB,J}
Conjugacy classes in Dg are = f‘/? A5 A )X7 M)/Z ’
s v v T
EREERENEEE R

The elements r and r3 are conjugate to each other. Reflections s and sr conjugate r
to r3, but r and r3 are not conjugate to other elements of the group.



Conjugacy h/fv(b"'; £3

-~
(TZ/},’,/Z IJ / orsl — 3 lNosa'g v

,8?—4[“ rsrl = o2 -l /£3J
1_ A A4 = AL
4 wr-# S AL =2

The eIement‘-r'2 is in its own conjugacy class. 9
- -/
S48 pg s Alemd A
al - -
VIl S e 1.8 4.8 & &4 ,3
- 48T 88"

) = A2 AN
Sle8 8 A7 8.8 5 /z-t,x;[zz%[
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~ -1 -
Conjugacy ASLET =LA B-8 = -
Conjugacy classes in Dy (LJ L é, ‘g .
Exercise: Find the conjugacy classes of Dig. /i . 43 F’—; A J

Elements of D1g can be written as:
Rotations: {e,r,r?, r3 r*} where r represents a rotation by 27 /5(72°) degree, and e
is the identity (rotation by O degrees).

Reflections: {s,rs, r?s, r3s, r*s} where each s represents a reflection across a line of

symmetry through a vertex or an edge. CQ g /) 4 Ll (z‘f ,f, l/.f /Z"/f)
v o= 438, 444

W can write D10 =< {e}, {r?}, {r.r r3} {s,r?s},{r,r? s}}

5. /2‘/5 S-4-4 S A8 A 8T aTIATS S



. 2 4! -
Conjugacy A A7 8. :3 ’/' e /2 p -
It turns out that: /ié ‘J e = é’
Conjugacy class of = {r,r*}, st =r* = ()X N A J)
Conjugacy class of r> = {r? r3}, sr?s71 = r* %
The rotations spllt into two conjugacy classes: {r, r?} and {r r3} as the as the

elements r and r* are conjugate tgea her, and similarly r? and r3 are conjugate to
each other. /{"jé = Aé ’-.;/2.,5‘4{ A

Reflections: AII reflections in Dy are conjugate to each other. Con ugatm‘g
reflection by a rotation produces another reflection: j j

: Fhe 2 3 o4
Comugacy class of reﬂe.ctlons = {s,fr,sr ) SIS } = {13 ,5 338 . ,3
This means all 5 reflections form a single conjugacy class. __— /LB ,8
Thus, the group Do has four distinct conjugacy classes. f" ,«3 lfd
- .

—

1) {e} (the identity element), 2) {r, r*} (rotations by 72° and 288°), 3) {r?, r }
(rotations by 144° and 216°

4) {s,rs,r?s,r3s, r*s} (all reflections) Vel
i




Centre of a Group
Definition
If G is a group, the centre of G is

Z(G) = {g € G|lhg = ghfor all h e G}.

ab=ba
@ Suppose G is abelian, Then hg = gh f})r all g, h, so Z(G) =
o Let's find the centre of i-j=h e [

Qs = {L—Luk’l—b J}- R )i Jh=t
Certainly 1 € Z(Qg), because 1g = g = g1 for all g. Also —1 € Z(Qs), because
—1 changes the sign of everything whether we multiply it from the left or the
right. li=1-[ 3= 5|

ij # ji, which means that neither i nor j is in Z(Qg). Similarly we can show

—i,—j.k,—k ¢ Z(Qs). S0 Z(Qe) = {T-T¥  _j1iocio s D)

Qs= 1162555, 8RS  Z/0)=411f



Centre of a Group b= hF fia_h

Proposition . “
If G is a group, then Z(G) < G. Z-h f# b-l

’l
Solution: G“‘u.(,n 4 MZ(&) a Sel

@ For any h € G we have

so1le Z(G). lCZ(G!)#? J(? C Z[G)

° Suppos§\)r g€ Z(G) Then forany h € G
hfg ™! —fhg t=fglghg™ = fg"thgg ' = fgT'h,

so fg 1 e 2(G). . fez(6) /'7‘=//1. .
Jj /Ag; fay/v@ IZ ha g
1§'eZ(6) '765;75‘;',,_

1



Centre of a Group

Lemma
Suppose G is a group and x € G. Then x € Z(G) if and only if x lies in a conjugacy
class of itself.

Proof.

Suppose x is in its own conjugacy class. This means that

g)@, Vge G gx=xg, VgeiG+xeZ(G)

<& (79((71,?(:> Jx=xJ => AXeZ(Gr)
=> XEZ&G) = hot= 2h j% ang h e

= b xh =5 K A~ N



Conjugacy in §,

Proposition

Suppose n > 3. Then Z(S,) = {id}.

Proof:

We know id € Z(S,,), so we just need to show that if g € S, and g # id then
g ¢ Z(Sh), i.e. there is some h € S, such that gh # hg. /

Since g #1id, we can finda# b€ {1,...,n} suchthat g-a=b. Let c€{1,...,n}
be different from a and b, “and Iet h= gbc) Then YMMPM oM

gh-a=g-a=0b, hg-a=h-b=c,

—_— = —~
forre] hip=c  hia)=¢

me)y="1o ) ="1

g’w)c 32 -;é e h2)=2



Conjugacy in §, Paﬁe C25)
Definition
Suppose f € S,, written in disjoint cycle notation. The cycle type of f is the list of
the lengths of the cycles of f, written in decreasing order.

) 23 0.(578Q_/[/ 2596,

Example: (119133’279{ '( 50 )"(.L./§,).l)
In Sg, the permutation (14 3)(2896) has cycle type (4,3,1,1). Notice in particular that
the cycle lengths must be written in decreasing order, and we include cycles of length 1
(even though we usually don't write them when we're writing down the permutation).

Theorem "~
Suppose f,g € S,. Then f ~s, g if and only if f and g have the same cycle type.

——

Big ldea
Conjugate permutations have the same structure. Such permutations are the
same up to renumbering.




Conjugacy in S, 41 = bxSRYK3x2

Consider the following permutations in G = S:

— v —

g=1(12) 172 3 4 5
h=(23)v 1 273 4 s
=(123456) 1T T T T

Since g and h have the same cycle type, they are lconjugate

(123456)( is)(165432)_(12)

Here is a visual interpretation of g = rhr—":

@ =19 @%

@ @..

®

e  o°
@ h=(23) . .



Conjugacy in §,

Theorem :»
Suppose f,g € S,. Then f ~s, g if and only if f and g have the same cycle type. J

Proof: 50?/7081 7[0~'1-9( 5’ aie Co/g'yﬁa,fé’, }bégn
. leal _ - - =
p, JebfE- =5 R gR=o —
het [QI;..~Qm)"4 Hes 70& ég'oe# 7[
/%) gam
k' g h.a-Be &Gha=1s
/i h. /Q.Qﬂf_-q/
/Jpp,Zy A on boiz Kooly %aﬁ 2



Conjugacy in S, we€ hans

g(b-a,):hal 9 (h.a,) b9 .. > J(h-n)hq
=5 (/Q-Q. ha. ... aa,,) s a aﬁc/( ?lﬁe ;{2
fos prnzeerd f&ﬁ%&(&pa%/;/&mdq

paxuo’ufo/m —C"a'*')‘;ifw

each !
(575, b/gtg oﬁa(oé/&éd/;a“;ﬁ/w



Exams Style Questions = h ch-H 2 be
Conjugacy classes of S3: kz . { [-.. n} ——> 9/, }

Ac eaeh no aﬁfw —5b‘ con
”TZ{(H) (23).(13)). T05%. (213)) } //:zféz 'y

3 b ﬂ/u
Conjugacy classes of Sy: j

be f/;
{id,{(12),(23),(13),(14)},{(123),(213),413}---} Ao

xXmxma

id, transpositions, (12)(34) , 3 -cycles, 4 -cylces b‘fb = ﬁ )



Exams Style Questions
Example: In S; the elements (1 2 3) and (1 3 2) are conjugate.

Transpositions are conjugate: {(12),(13),(23)}. (/2) ét»m
Identity element is a conjugate class. (/5) pafe
on: / nd ot R 7
W}v (12) s (13) KM h= (23) 25
f J .;[ Jeotent Notes:

h{H'- g

(37 13) =5 h= (23)
(23)(!2,)(23)"c (23)(12) (23)= {3 2 /) = (13) =5

([ 23
%__,[123) ks(23) (23)(,2‘3>(23)= (3 ’2)4(/32)

A
3,,(/“) Jo he(23) Qomambst Tl P = (23)



Exams Style Questions
Example: In Sy, find g such that g = kfk~1

f = (1356)(28)(497) and



Exams Style Questions

What are the conjugacy classes of Qg = {1, —1,i,—i,j, —j, k, —k}.
Solution: a F\J 2-J=h L i - J. -J R -R
o {1} T s 7T k-
0 (1) J(—/ db-—& ) ’,,¢”£JJIQ b

o {i,—i} 2o 42 -1 "[ 1 -?

0 {.—j} dej k= P|i-s -l

© {k,—k} - S A

Ji=-h J i - -k

_jx-i=h N J R

hK—_;‘,hxi b h ’b f—J

= ~R |-k R ~J




Exams Style Questions
Question: Write few elements of Conjugacy class of ( 13)(4679) in So

Solution: Here is the list of some elements that belong to conjugacy class of
(13)(4679).

@ (2 4)(5781) transposition (24) and 4 -cycle (5781)
9 (56)(2983)
O (18)(2347)



Exams Style Questions

Question: In this question we work with the group

Uy =1{1,2,4,5,8,10,11,13,16,17,19, 20}.
© Find order of 5.
@ Hence find an element of order 3, and a subgroup H of order 3.
© Find all the right cosets of H in U»;.



Exams Style Questions
Solution:
@ We calculate 52 = 4, 53 =20, 5* = 16, 5° = 17, 5% = 1, so order of 5 = 6.
@ Since 5 has order 6, 52 = 4 has order 3. So H = (4) = {1,4,16} is a subgroup of

order 3.
o
H1 ={1,4,16},
H5 = {5,20,17},
H2 = {2,8,11},

H10 = {10, 19,13}.

(We know we've found all the right cosets because we've written each element of
U1 once.)



Exams Style Questions
Question:
Consider the following permutations:

123456738 123456738
a=(+L 4+ b= bl
2 8436751 71325684

Write down the disjoint cycle notation for a and b, and also for ab, ba, a—t, b~1, (aba)~! and
b~lab. Which of these permutations lie in Ag?

= (128)(34)(567)
17842)
ab = (1567)(348)
ba = (243)(5687)

= (
(
(
(182)(34)(576)
(
(
(15

= (13825)
b~t = (12487)
b~tab = (156)(247)(38).



QMplus Quiz

Attempt Quiz 4 at QMplus page



Some Useful Notations

(Throughout this course, we use the following notation.
@ C, denotes the cyclic group of order n.

o Kilein group often symbolized by the letter V4 or as K4 = Z4 X Z4 denotes the
group {1, a, b, c}, with group operation given by

P =pr=c=1, ab=ba=c, ac=ca=b, bc=cb=a.

@ U, is the set of integers between 0 and n which are prime to n, with the group
operation being multiplication modulo n.




Some Useful Notations

@ Dy, is the group with 2n elements

1, r % .., Y os s, s, .., " ls

The group operation is determined by the relations r” = s> =1 and
sr=r""ls.

@ S, denotes the group of all permutations of {1,..., n}, with the group
operation being composition.

@ GL,(R) is the group of n x n invertible matrices with entries in R, with the
group operation being matrix multiplication.

e Qg is the group {1,—-1,/i,—i,j,—j, k,—k}, in which

P=P2=k>=-1, =k, jk=i, ki=], ji=—k, ki =—i, ik=—j.
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