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Definition of Cosets

Definition

Let H be a subgroup of the group G whose operation is written multiplicatively
(juxtaposition denotes the group operation). Given an element g of G , the left cosets
of H in G are the sets obtained by multiplying each element of H by a fixed element g
of G (where g is the left factor).

gH =
{
gh : h an element of H

}
for g in G .

The right cosets are defined similarly, that is,

Hg =
{
hg : h an element of H

}
for g in G .



Cosets: Example
Example: Let G be the dihedral group of order six. Its elements may be represented by
{I , a, a2, b, ab, a2b}. In this group, a3 = b2 = I and ba = a2b. This is enough information to
fill in the entire Cayley table:

Let T be the subgroup {I , b}. The left cosets
of T are: IT = T = {I , b},
aT = {a, ab}, and a2T = {a2, a2b}. The
right cosets of T are: TI = T = {I , b},
Ta = {a, ba} = {a, a2b} and
Ta2 = {a2, ba2} = {a2, ab}.

Let H be the subgroup {I , a, a2}. The left
cosets of H are IH = H and
bH = {b, ba, ba2}. The right cosets of H are
HI = H and Hb = {b, ab, a2b} = {b, ba2, ba}.
In this case, every left coset of H is also a
right coset of H? Why?



Cosets: Example

Example: Take G = S3, H = <(12)> = {id , (12)} and g = (23). Then
Hg = {(23), (123)}, gH = {(23), (132)}.
Remark:
(i) H is always a right coset of itself, since

H1 = {h1|h ∈ H} = {h|h ∈ H} = H.

(ii) We can have Hf = Hg even when f 6= g .

For example, let G = C6 = {1, z , z2, z3, z4, z5}. Then H = {1, z3} is a subgroup. We
have Hz = {z , z4}, and also Hz4 = {z , z4}. We can see that Hf = Hg .



Cosets: Proposition

Proposition

Suppose G is a group, H ≤ G and f , g ∈ G .
1. |Hg | = |H|.
2. If f ∈ Hg , then Hf = Hg .
3. Each element of G is contained in exactly one right coset of H.



Cosets: Proposition



Cosets: Proposition

Example

Take G = D8 and H = {1, rs}. Then the right cosets are

H1 = {1, rs}

Hr = {r , s}

Hr2 = {r2, r3s}

Hr3 = {r3, r2s}



Cosets: Coset Lemma

Coset lemma

Suppose G is a group, H ≤ G and f , g ∈ G . Then:
(i) Hf = Hg if and only if fg−1 ∈ H;
(ii) fH = gH if and only if f −1g ∈ H.



Cosets

Proposition

If G is a group and H ≤ G , then the number of right cosets of H is equal to the
number of left cosets of H.



Cosets



Lagrange’s Theorem

Definition

Suppose G is a group and H ≤ G . The index of H in G is the number of right cosets
of H in G , written as |G : H|.

Lagrange’s Theorem

Suppose G is a group and H ≤ G . Then |G | = |H||G : H|. In particular, if G is finite
then |H| divides |G |.



Proof of Lagrange’s Theorem



Lagrange’s Theorem

Example: G = Z, H = 3Z.

[G : H] = [Z : 3Z] = 3

The cosets of H in Z are of the form:

g + H = {g + h|h ∈ H} = {g + 3k |k ∈ Z}
where g ∈ Z.
Thus the distinct cosets of 3Z in Z are:
(i) 0 + 3Z = {0, 3, 6, 9, · · · }
(ii) 1 + 3Z = {1, 4, 7, 10, · · · }
(iii) 2 + 3Z = {2, 5, 8, 11, · · · }



Lagrange’s Theorem
Example Dihedral group D8:
Consider the dihedral group D8 , which represents the symmetries of a square. The
order of 8. The elements of D8 consist of 4 rotations and 4 reflections.
Let H = {e, r , r2, r3, }, where e is the identity and r , r2, r3 are the rotations by 90◦,
180◦, and 270◦. This is a subgroup of D8 (the group of rotations), and its order is 4
Since 4 divides 8, Lagrange’s Theorem holds for this example.
No of cosets of H in D8 are 2, which are

H = {1, r , r2, r3} and Hs = {s, rs, r2s, r3s}
Symmetric Group S3: Consider the symmetric group S3, which is the group of all
permutations of 3 elements. The order of S3 is 6. The elements of S3 are:
S3 =

{
e, (12), (13), (23), (123), (132)

}
. Now, consider the subgroup H =

{
e, (12)

}
.

This is a subgroup of S3 , and the order of H is 2. According to Lagrange’s Theorem,
the order of H must divide the order of S3, which is true. The list of right cosets of H is

H = {e, (12)}, {(13), (132)}, and {(23), (123)}



Corollary

Corollary

Suppose G is a finite group and g ∈ G . Then ord(g) divides |G |.



Euler’s Theorem
Applications in Number Theory

Un = (Z/nZ)×

Invertible residues mod n.
|Un| = Φ(n) = no of residues coprime to n.

Pick a residues x ∈ Un it generates a cyclic subgroup

〈x〉 =
{

1, x , x2, · · · xord(x)−1
}

of order ord(g).
Ord(g) |Φ(n) =⇒ xΦ(n) = 1.

In other words
If x is coprime to n, then xΦ(n) ≡ 1mod(n).



Euler’s Theorem

Example:

34 = 81 ≡ 1 mod (8)

ϕ(8) = |{1, 3, 5, 7, }| = 4

If n = p is prime, then ϕ(n) = p − 1, X p−1 ≡ 1mod p ⇔ XP − X is divisible by p.

For example X 7 − X is divisible by 7, 27 − 2 = 128− 2 = 126 = 7.18.



Lagrange’s Theorem
Corollary: If g ∈ G then or(g)||G |.

Example

Sn is symmetric group. |Sn| = n!. , An =< Sn group of even permutation.

[Sn : An] = 2

Which right cosets do we know.

An all the even permutation

Coset of An(12) = odd permutations

[Sn : An] =
|Sn|
|An|



Conjugacy

Definition

Suppose G is a group and f , g ∈ G . We say that f is conjugate to g in G (written
f ∼G g) if there is k ∈ G such that kfk−1 = g .

Lemma

Suppose G is a group then ∼G is an equivalence relation.

Proof.

1 Reflexive: x = exe−1

2 Symmetric: x = gyg−1 =⇒ y = g−1xg .

3 Transitive: x = gyg−1 and y = hzh−1 =⇒ x = (gh)z(gh)−1



Conjugacy



Conjugacy in D8

Example: Dehidral group of order 8 In this case the conjugacy classes

correspond to “types of symmetry”:

r and r3 are both 90◦ rotations;
r2 is the only 180◦ rotation;
s and r2s are both reflections in axes parallel to the sides of the square;
rs and r3s are both reflections in diagonals of the square.

Conjugacy classes in D8

Conjugacy classes in D8 are{
{1}, {r , r3}, {r2}, {s, r2s}, {rs, r3s}

}
The elements r and r3 are conjugate to each other. Reflections s and sr conjugate r
to r3, but r and r3 are not conjugate to other elements of the group.



Conjugacy

srs−1 = r3

rsr−1 = sr2

rsrr−1 = sr3

The element r2 is in its own conjugacy class.



Conjugacy

Conjugacy classes in D10

Exercise: Find the conjugacy classes of D10.

Elements of D10 can be written as:
Rotations: {e, r , r2, r3, r4} where r represents a rotation by 2π/5(72◦) degree, and e
is the identity (rotation by 0 degrees).

Reflections: {s, rs, r2s, r3s, r4s} where each s represents a reflection across a line of
symmetry through a vertex or an edge.

W can write D10 =

{
{e}, {r2}, {r , r3}, {s, r2s}, {r , r3s}

}



Conjugacy

It turns out that:
Conjugacy class of r = {r , r4}, srr−1 = r4

Conjugacy class of r2 = {r2, r3}, sr2s−1 = r4

The rotations split into two conjugacy classes: {r , r2} and {r2, r3} as the as the
elements r and r4 are conjugate to each other, and similarly r2 and r3 are conjugate to
each other.

Reflections: All reflections in D10 are conjugate to each other. Conjugating any
reflection by a rotation produces another reflection:
Conjugacy class of reflections = {s, sr , sr2, sr3, sr4}
This means all 5 reflections form a single conjugacy class.
Thus, the group D10 has four distinct conjugacy classes.

1) {e} (the identity element), 2) {r , r4} (rotations by 72◦ and 288◦), 3) {r2, r3}
(rotations by 144◦ and 216◦

4) {s, rs, r2s, r3s, r4s} (all reflections)



Centre of a Group

Definition

If G is a group, the centre of G is

Z (G ) =

{
g ∈ G |hg = gh for all h ∈ G

}
.

Suppose G is abelian. Then hg = gh for all g , h, so Z (G ) = G .
Let’s find the centre of

Q8 =

{
1,−1, i ,−i , j ,−j

}
.

Certainly 1 ∈ Z (Q8), because 1g = g = g1 for all g . Also −1 ∈ Z (Q8), because
−1 changes the sign of everything whether we multiply it from the left or the
right.
ij 6= ji , which means that neither i nor j is in Z (Q8). Similarly we can show
−i ,−j , k ,−k /∈ Z (Q8). So Z (Q8) = {1,−1}.



Centre of a Group

Proposition

If G is a group, then Z (G ) ≤ G .

Solution:

For any h ∈ G we have
h1 = h = 1h,

so 1 ∈ Z (G ).
Suppose f , g ∈ Z (G ). Then for any h ∈ G

hfg−1 = fhg−1 = fg−1ghg−1 = fg−1hgg−1 = fg−1h,

so fg−1 ∈ Z (G ).



Centre of a Group

Lemma

Suppose G is a group and x ∈ G . Then x ∈ Z (G ) if and only if x lies in a conjugacy
class of itself.

Proof.

Suppose x is in its own conjugacy class. This means that

gxg−1 = x , ∀g ∈ G ⇔ gx = xg , ∀g ∈ G ↔ x ∈ Z (G )



Conjugacy in Sn
Proposition

Suppose n ≥ 3. Then Z (Sn) = {id}.
Proof:
We know id ∈ Z (Sn), so we just need to show that if g ∈ Sn and g 6= id then
g /∈ Z (Sn), i.e. there is some h ∈ Sn such that gh 6= hg .
Since g 6= id, we can find a 6= b ∈ {1, . . . , n} such that g · a = b. Let c ∈ {1, . . . , n}
be different from a and b, and let h = (b c). Then

gh · a = g · a = b, hg · a = h · b = c ,

so gh 6= hg .



Conjugacy in Sn
Definition

Suppose f ∈ Sn, written in disjoint cycle notation. The cycle type of f is the list of
the lengths of the cycles of f , written in decreasing order.

Example:
In S9, the permutation (1 4 3)(2896) has cycle type (4, 3, 1, 1). Notice in particular that
the cycle lengths must be written in decreasing order, and we include cycles of length 1
(even though we usually don’t write them when we’re writing down the permutation).

Theorem

Suppose f , g ∈ Sn. Then f ∼Sn g if and only if f and g have the same cycle type.

Big Idea

Conjugate permutations have the same structure. Such permutations are the
same up to renumbering.



Conjugacy in Sn



Conjugacy in Sn
Theorem

Suppose f , g ∈ Sn. Then f ∼Sn g if and only if f and g have the same cycle type.

Proof:



Conjugacy in Sn



Exams Style Questions

Conjugacy classes of S3:

{
id , {(12), (23), (13)}, {(123), (213)}

}
xmxma

Conjugacy classes of S4:

{
id , {(12), (23), (13), (14)}, {(123), (213), 413} · · ·

}
id, transpositions, (12)(34) , 3 -cycles, 4 -cylces



Exams Style Questions

Example: In S3 the elements (1 2 3) and (1 3 2) are conjugate.

Transpositions are conjugate: {(12), (13), (23)}.
Identity element is a conjugate class.



Exams Style Questions

Example: In S9, find g such that g = kfk−1

f = (1356)(28)(497) and

k =


1 2 3 4 5 6 7 8 9
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
↓ ↓ ↓ ↓

4 1 6 3 8 2 7 5 9



g = kfk−1 = (4682)(15)(397)

g =


1 2 3 4 5 6 7 8 9
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
↓ ↓

5 4 9 6 1 8 3 2 7





Exams Style Questions

What are the conjugacy classes of Q8 = {1,−1, i ,−i , j ,−j , k ,−k}.

Solution:

1 {1}
2 {−1}
3 {i ,−i}
4 {j ,−j}
5 {k ,−k}



Exams Style Questions
Question: Write few elements of Conjugacy class of ( 13)(4679) in S9

Solution: Here is the list of some elements that belong to conjugacy class of
(13)(4679).

1 (2 4)(5781) transposition (24) and 4 -cycle (5781)
2 (56)(2983)
3 (18)(2347)



Exams Style Questions

Question: In this question we work with the group
U21 = {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20}.

1 Find order of 5.
2 Hence find an element of order 3, and a subgroup H of order 3.
3 Find all the right cosets of H in U21.



Exams Style Questions
Solution:

1 We calculate 52 = 4, 53 = 20, 54 = 16, 55 = 17, 56 = 1, so order of 5 = 6.
2 Since 5 has order 6, 52 = 4 has order 3. So H = 〈4〉 = {1, 4, 16} is a subgroup of

order 3.
3

H1 = {1, 4, 16},
H5 = {5, 20, 17},
H2 = {2, 8, 11},
H10 = {10, 19, 13}.

(We know we’ve found all the right cosets because we’ve written each element of
U21 once.)



Exams Style Questions
Question:
Consider the following permutations:

a =

1 2 3 4 5 6 7 8
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
2 8 4 3 6 7 5 1

 , b =

1 2 3 4 5 6 7 8
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
7 1 3 2 5 6 8 4

 .

Write down the disjoint cycle notation for a and b, and also for ab, ba, a−1, b−1, (aba)−1 and
b−1ab. Which of these permutations lie in A8?

a = (128)(34)(567)

b = (17842)

ab = (1567)(348)

ba = (243)(5687)

a−1 = (182)(34)(576)

aba−1 = (13825)

b−1 = (12487)

b−1ab = (156)(247)(38).

Using the fact that a permutation f is even if and only if ev(f ) is even, we see that among the
permutations above, b, aba−1 and b−1 lie in A8.



QMplus Quiz

Attempt Quiz 4 at QMplus page



Some Useful Notations

Throughout this course, we use the following notation.

Cn denotes the cyclic group of order n.

Klein group often symbolized by the letter V4 or as K4 = Z4 × Z4 denotes the
group {1, a, b, c}, with group operation given by

a2 = b2 = c2 = 1, ab = ba = c , ac = ca = b, bc = cb = a.

Un is the set of integers between 0 and n which are prime to n, with the group
operation being multiplication modulo n.



Some Useful Notations

D2n is the group with 2n elements

1, r , r2, . . . , rn−1, s, rs, r2s, . . . , rn−1s.

The group operation is determined by the relations rn = s2 = 1 and
sr = rn−1s.

Sn denotes the group of all permutations of {1, . . . , n}, with the group
operation being composition.

GLn(R) is the group of n × n invertible matrices with entries in R, with the
group operation being matrix multiplication.

Q8 is the group {1,−1, i ,−i , j ,−j , k,−k}, in which

i2 = j2 = k2 = −1, ij = k , jk = i , ki = j , ji = −k, kj = −i , ik = −j .
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