

QP_LS_JA (Campus M)

17:00 (Week 8.

Group Theory

Week 4, Lecture 1, 2 & 3

Dr Lubna Shaheen

Assessment 1: Week 1- Week 5 : Friday 15th Nov Deadline

Table of Contents

Thursday

Cosets

- Coset Lemma
- Lagrange's Theorem

2 Conjugacy

Centre of a Group

4 Conjugacy in S_n

(2) hearing cofe

1:00-2:00

Monday office ofter 12:30 pm Thursday in Morneng.

Definition of Cosets

Definition

Let H be a subgroup of the group G whose operation is written multiplicatively (juxtaposition denotes the group operation). Given an element g of G, the left cosets of H in G are the sets obtained by multiplying each element of H by a fixed element g of G (where g is the left factor).

$$\underline{g}H = \{\underline{g}h: h \text{ an element of } H\}$$
 for \underline{g} in G

The right cosets are defined similarly, that is,

$$Hg = \{hg : h \text{ an element of } H\}$$
 for g in G .

 $\begin{array}{c} \textbf{Right}\\ \textbf{D}_{k} = \left\{ 1, d, k^{2}, \beta, \beta \Lambda, \beta \Lambda^{2} \right\} \end{array}$

Cosets: Example

 $\mathcal{D}_{6} = \{1, \mathcal{E}, \mathcal{E}^{2}, \mathcal{A}, \mathcal{A}\mathcal{B}, \mathcal{A}^{2}\mathcal{B}\}$

Example: Let G be the dihedral group of order six. Its elements may be represented by $\{I, a, a^2, b, ab, a^2b\}$. In this group, $a^3 = b^2 = I$ and $ba = a^2b$. This is enough information to fill in the entire Cayley table: $a = a^2, b = b^2$ $H = \frac{3}{2} = \frac{3$

*	Ι	a	<i>a</i> ²	b	ab	a^2b
Ι	Ι	а	a ²	Ь	ab	a^2b
а	а	a^2	Ι	ab	a^2b	Ь
a^2	a^2	Ι	а	a^2b	b	ab
b	Ь	a^2b	ab	Ι	a^2	а
ab	ab	Ь	a^2b	а	Ι	a^2
a^2b	a^2b	ab	b	a^2	а	Ι

 $T = \{1, \lambda\}_{NT}, \lambda^2 \overline{I}, \overline{I}, \lambda,$

Let **T** be the subgroup $\{I, b\}$. The left cosets of T are: $IT = T = \{ \overbrace{I, b} \}$. $aT = \{a, ab\}, and a^2T = \{a^2, a^2b\}$. The right cosets of T are: $TI = T = \{I, b\},\$ $Ta = \{a, ba\} = \{a, a^2b\}$ and $Ta^2 = \{a^2, ba^2\} = \{a^2, ab\}.$ 31, 2, 22 Let **H** be the subgroup $\{1, a, a^2\}$. The left cosets of H are IH = H and $bH = \{b, ba, ba^2\}$. The right cosets of H are $\mathcal{H} = H$ and $Hb = \{b, ab, a^2b\} = \{b, ba^2, ba\}.$ In this case, every left coset of H is also a right coset of H? Why?

Cosets: Example

 $\Lambda T = \{k, \Lambda S\} \quad \mathcal{R}^2 T = \{k^2, \mathcal{R}^2 S\}$

Example: Take $G = S_3$, $H = \langle (12) \rangle = \{id, (12)\}$ and g = (23). Then $Hg = \{(23), (123)\}, gH = \{(23), (132)\}.$

Remark:

(i) H is always a right coset of itself, since

$$H1 = \{h1 | h \in H\} = \{h | h \in H\} = H.$$

(ii) We can have Hf = Hg even when $f \neq g$.

For example, let $G = C_6 = \{1, z, z^2, z^3, z^4, z^5\}$. Then $H = \{1, z^3\}$ is a subgroup. We have $Hz = \{z, z^4\}$, and also $Hz^4 = \{z, z^4\}$. We can see that Hf = Hg.

S

Cosets: Proposition

Proposition Subgroup Suppose G is a group, $H \leq G$ and $f, g \in G$. 1. |Hg| = |H|. 2. If $f \in Hg$, then Hf = Hg. 3. Each element of G is contained in exactly one right coset of H. 1) G: H→ Hg, G(h) = hg well-defined yrs a pijection <u>One-one</u>: Q(h) = Q(h)hg = hghgg= bg.g= > h= b Onto: for every hg, Jhe H, S. That

Cosets: Proposition U(h) = hg2) f EHg => Hf= Hg f= hg, heH. , g= ht $hf \in Hf$, $hf = hhg = hhg \in Hg$ $Hf \subseteq Hg$ lgeHg lg= lh'f E Hf IEH 3) fEG1,

Cosets: Proposition $\mathcal{D}_{8} = \frac{2}{3} I_{1} \& \mathcal{A}^{2}, \mathcal{A}^{3}, \mathcal{A}, \mathcal{A}\mathcal{B}, \mathcal{A}^{2}\mathcal{B}, \mathcal{B}^{3}\mathcal{B}^{2}$ Example

Take $G = D_8$ and $H = \{1, rs\}$. Then the right cosets are

8-2=2-81 G=Do $H1 = \{1, rs\}$ $Hr = \{r, s\}$ $Hr^2 = \{r^2, r^3s\}$ $Hr^3 = \{r^3, r^2s\}$ H: R = \$ 1, RS } . & = 3 &, RSR ? = 3 K, 8 ? RBR = 8-1-18 = 8 = 28 $H \cdot \lambda^{2} = \frac{2}{2} / 5 \cdot \delta^{2} + \delta^{2} = \frac{2}{2} (\frac{1}{5} + \delta \delta \delta^{2})^{2} = \frac{2}{5} \delta^{2} + \frac{1}{5} \delta^{2}$

Cosets: Coset Lemma

Coset lemma

Suppose G is a group, $H \leq G$ and $f, g \in G$. Then: (i) Hf = Hg if and only if $fg^{-1} \in H$; (ii) $\underline{f}H = \overline{g}H$ if and only if $f^{-1}g \in H$.

Hf=Hg (=≻) $f = I \cdot f \in Hf = Hg$ $f = hg \implies fg^{-} = h \in H$ $(= \int fg' \in H \quad f = fg'g \in Hg$ from above Hf = H9

Cosets

Proposition

If G is a group and $H \leq G$, then the number of right cosets of H is equal to the number of left cosets of H.

D: Set of left casets -Right cosets HJ 0(9H) = H9-1 Hf= H9 well-define caset Lemma fH=gHV => f g H, by caset femma

Cosets Imjection: One-one.

 $Hf^{-1} = Hg^{-1}$

Jurjectine,

by definition

 $\mathcal{L}(gH) = \mathcal{L}(fH)$ $Hg^{T} = Hf^{-1}$ by coset ferma $f^{-\prime}g \in H$ fH = gHby caset Lemma

One-one.

Lagrange's Theorem

Definition

Suppose G is a group and $H \leq G$. The index of H in G is the number of right cosets of H in G, written as |G:H|.

Lagrange's Theorem Suppose G is a group and $H \le G$. Then |G| = |H||G : H|. In particular, if G is finite then |H| divides |G|.

Phoof: |G:H/ is the no of hight cosets of Hin G, They have Soge 1 HI.

Proof of Lagrange's Theorem

So total size of coset's together is $|H| \cdot |G:H| = |G|$. Because each element of G lives exactly in one caset so, The number of elements of Gr must be [H]. [G:H]

Lagrange's Theorem
$$3\mathcal{X} = \{20, \pm 3, \pm 6, \pm 9, \cdots\}$$

Example: $G = \mathbb{Z}, H = 3\mathbb{Z}$.

$$[G:H] = [\mathbb{Z}:3\mathbb{Z}] = 3$$

The cosets of H in \mathbb{Z} are of the form:

$$g + H = \{g + h|h \in H\} = \{g + 3k|k \in \mathbb{Z}\}$$
where $g \in \mathbb{Z}$.
Thus the distinct cosets of $3\mathbb{Z}$ in \mathbb{Z} are:
(i) $0 + 3\mathbb{Z} = \{0, 3, 6, 9, \cdots\}$
(ii) $1 + 3\mathbb{Z} = \{1, 4, 7, 10, \cdots\}$
(iii) $2 + 3\mathbb{Z} = \{2, 5, 8, 11, \cdots\}$

$$G: H = |\mathbb{Z}: 3\mathbb{Z}| = 3$$

$$Countably$$

$$G: H = |\mathbb{Z}: 3\mathbb{Z}| = 3$$

$$Countably$$

$$G: H = |\mathbb{Z}: 3\mathbb{Z}| = 3$$

$$Countably$$

Lagrange's Theorem

Example Dihedral group \mathcal{D}_8 :

 $k = 90^{\circ}$ ks s - Reflection

Consider the dihedral group \mathcal{D}_8 , which represents the symmetries of a square. The order of 8. The elements of \mathcal{D}_8 consist of 4 rotations and 4 reflections. Let $H = \{e, r, r^2, r^3, \}$, where *e* is the identity and r, r^2, r^3 are the rotations by 90°, 180°, and 270°. This is a subgroup of \mathcal{D}_8 (the group of rotations), and its order is 4 Since 4 divides 8, Lagrange's Theorem holds for this example. No of cosets of *H* in \mathcal{D}_8 are 2, which are

$$H = \{1, r, r^2, r^3\}$$
 and $Hs = \{s, rs, r^2s, r^3s\}$

Symmetric Group S_3 : Consider the symmetric group S_3 , which is the group of all permutations of 3 elements. The order of S_3 is 6. The elements of S_3 are: $S_3 = \{e, (12), (13), (23), (123), (132)\}$. Now, consider the subgroup $H = \{e, (12)\}$. This is a subgroup of S_3 , and the order of H is 2. According to Lagrange's Theorem, the order of H must divide the order of S_3 , which is true. The list of right cosets of H is |H|=2, \Rightarrow 3 distinct Cosets.

 $H = \{e, (12)\}, \{(13), (132)\}, \text{ and } \{(23), (123)\}$

 $(12) \cdot (13) = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = (132)$ Right Cosets Corollary Corollary Suppose G is a finite group and $g \in G$. Then ord(g) divides |G|. $H = \frac{2}{2} e_{2} (12)^{2}$ $H \cdot (13)$ $= \frac{2}{2} (13) (132)^{2}$ $H_{2} (22)$ H=∠g>, H≤GI 141=12971, by Langrange's Theorem $H \cdot (23) = \begin{cases} 2(23), (123) \end{cases}$ 01d(9) [[G1]

Invertable sesideals mod (n) **Euler's Theorem Applications in Number Theory**

$$\mathcal{U}_n = (\mathbb{Z}/n\mathbb{Z})^{\times}$$
 Co-prome to n

Invertible residues mod n.

Un=1 $|\mathcal{U}_n| = \Phi(n) =$ no of residues coprime to n.

Pick a residues $x \in \mathcal{U}_n$ it generates a cyclic subgroup

$$\langle x \rangle = \left\{1, x, x^2, \cdots x^{ord(x)-1}\right\}$$

of order $\operatorname{ord}(g)$. $\operatorname{Ord}(g) | \Phi(n) \implies x^{\Phi(n)} = 1. \mod (n).$

In other words

If x is coprime to n, then $x^{\Phi(n)} \equiv 1 \mod(n)$.

(q | 8) = | 3 | 3, 5, 7 | = 4**Euler's Theorem** Example:

 $3^4 = 81 \equiv 1 \mod (8)$

 $\varphi(8) = |\{1, 3, 5, 7, \}| = 4$ If n = p is prime, then $\varphi(n) = p - 1$, $X^{p-1} \equiv 1 \mod p \Leftrightarrow X^P - X$ is divisible by p. For example $X^7 - X$ is divisible by 7, $2^7 - 2 = 128 - 2 = 126 = 7.18$.

$$\mathcal{U}_{8} = \{1, 2, 3, 5, 7\}$$

()mpostant Lagrange's Theorem **Corollary**: If $g \in G$ then or(g)||G|. |Sn|=n! An: set of all even permutation Example S_n is symmetric group. $|S_n| = n!$., $A_n = \langle S_n$ group of even permutation. An SS. $[\mathcal{S}_n:\mathcal{A}_n]=2$ |An:Sn|=2 \mathcal{A}_n all the even permutation An: SnllAnl Coset of $A_n(12) =$ odd permutations <u>n: 2=n!</u> = n!

Conjugacy
$$BF-BB-AA$$
 (campus M)
Definition
Suppose G is a group and f, g \in G. We say that f is conjugate to g in G (written $f \sim_G g$) if there is $k \in G$ such that $kfk^{-1} = g$.
Notation $h \neq h^{-1} = g$ Page 25 Sn.
Lemma
Suppose G is a group then \sim_G is an equivalence relation.
Proof. $f \sim_G g$ $f = g f$
 \circ Reflexive: $x = exe^{-1}$ (x,y) $x = ggf$ $f = g f$
 \circ Symmetric: $x = gyg^{-1} \Rightarrow y = g^{-1}xg$.
 \circ Transitive: $x = gyg^{-1}$ and $y = hzh^{-1} \Rightarrow x = (gh)z(gh)^{-1}$ $g^{-1}g^{-1}g^{-1}g^{-1}$
 $x = g Hg^{-1} = g(hJhf^{-1})g^{-1}$

Conjugacy

= (gh) z h' g'= (gh) z (gh)' $\chi = h 2 h^{-1}$ (a,j) x~6 J

Conjugacy in \mathcal{D}_8

Example: Dehidral group of order 8 In this case the conjugacy classes

correspond to "types of symmetry":

- r and r^3 are both 90° rotations;
- r^2 is the only 180° rotation;
- s and r^2s are both reflections in axes parallel to the sides of the square;
- rs and r^3s are both reflections in diagonals of the square.

Conjugacy classes in
$$D_8$$

Conjugacy classes in D_8 are = $\{1, 2, 1^2, 1^3, 3, 12, 12^3, 13^3$

The elements r and r^3 are conjugate to each other. Reflections s and sr conjugate r to r^3 , but r and r^3 are not conjugate to other elements of the group.

KAT = 13 Conjugacy \$x= 8-18 2~0, 23 V $srs^{-1} = r^3$ 2 r.s. 2 = 2 3 $rsr^{-1} = sr^2 \checkmark$ 8=1 $f_{1} = f_{1}$ $\lambda^{4} = [$ The element r^2 is in its own conjugacy class. \$15= R-18.8- RT. e= & = R3 V&125= S.E. R. S'= 6. S. R. ST = 1º 2: 8-8-1 E R'= N2 S. ES S = 2-1 S. S. S. ST = 2-1 S = (23)

Conjugacy

Conjugacy classes in \mathcal{D}_{10}

Exercise: Find the conjugacy classes of \mathcal{D}_{10} .

Elements of \mathcal{D}_{10} can be written as: **Rotations**: $\{e, r, r^2, r^3, r^4\}$ where r represents a rotation by $2\pi/5(72^\circ)$ degree, and e is the identity (rotation by 0 degrees).

R&R" = R 8 R - 8.8 =

68.88.8

8°. 8-1 - 2°8

Reflections: $\{s, rs, r^2s, r^3s, r^4s\}$ where each *s* represents a reflection across a line of symmetry through a vertex or an edge. $D_{10} = \frac{2}{2} [1, 1, 1, 2, 3, 3, 4, 4, 8, 18, 8, 8, 8]$ W can write $D_{10} = \{ \{e\}, \{r^2\}, \{r, r^3\}, \{s, r^2s\}, \{r, r^3s\} \}$ $\beta \cdot h^2 \beta^{-1} = \beta \cdot h \cdot h \cdot \beta^{-1} = h^{-1} \beta \cdot h \cdot \beta^{-1} = h^{-1} \beta \cdot h^{-1} \beta h^{$ 1-20 S.L. S= R-1. S. S-1 $= \&^{7}.e = \&^{3}$

Conjugacy

It turns out that: Conjugacy class of $r = \{r, r^4\}$, $srr^{-1} = r^4$ Conjugacy class of $r^2 = \{r^2, r^3\}$, $sr^2s^{-1} = r^4$ The rotations split into two conjugacy classes: $\{r, r^2\}$ and $\{r^2, r^3\}$ as the as the elements r and r^4 are conjugate to each other, and similarly r^2 and r^3 are conjugate to each other. Λ^2 , $\vartheta \cdot \vartheta^{-2} = \Lambda \cdot \vartheta \cdot \vartheta^{-1} = \vartheta \cdot \Lambda^2 \vartheta \cdot \vartheta^{-1} = \vartheta \cdot \Lambda^2 \vartheta \cdot \vartheta^{-1}$

= hb. b.h. b = h. e.h. b

Reflections: All reflections in \mathcal{D}_{10} are conjugate to each other. Conjugating any reflection by a rotation produces another reflection: Conjugacy class of reflections = $\{s, sr, sr^2, sr^3, sr^4\}$ This means all 5 reflections form a single conjugacy class. Thus, the group \mathcal{D}_{10} has four distinct conjugacy classes. $\mathcal{D}_{10} = \mathcal{D}_{10} + \mathcal{D}_{10}$

1) $\{e\}$ (the identity element), 2) $\{r, r^4\}$ (rotations by 72° and 288°), 3) $\{r^2, r^3\}$ (rotations by 144° and 216° 4) $\{s, rs, r^2s, r^3s, r^4s\}$ (all reflections) Verify Trues

Centre of a Group

Definition

If G is a group, the **centre** of G is

$$Z(G) = igg\{ g \in G | hg = gh ext{ for all } h \in G igg\}$$

ab=ba

• Suppose <u>G</u> is abelian. Then hg = gh for all g, h, so Z(G) = G. • Let's find the centre of $Q_8 = \left\{1, -1, i, -i, j, -j\right\}$. $k \qquad j \cdot j = k \qquad j \cdot j = -k$ $j \cdot h = i$ Certainly $1 \in Z(\mathcal{Q}_8)$, because 1g = g = g1 for all g. Also $-1 \in Z(\mathcal{Q}_8)$, because -1 changes the sign of everything whether we multiply it from the left or the $1 \cdot z = i \cdot 1$ $1 \cdot j = s \cdot 1$ right. $ij \neq ji$, which means that neither *i* nor *j* is in $Z(Q_8)$. Similarly we can show $-i, -j, k, -k \notin Z(Q_8). \text{ So } Z(Q_8) = \{1, -1\}, \quad -1, i = -i = i - i - i \}$ $Q_8 = \{1, j \neq i, j \neq j, j \neq k\}, \quad Z(Q_8) = \{1, 1\}$

Centre of a Group

$$i j = k \neq j \cdot i = -k$$

Proposition

If G is a group, then $Z(G) \le G$. Solution: Solution: Given is Wat Z(G) = Set

• For any $h \in G$ we have

h1 = h = 1h,so $1 \in Z(G).$ $I \in Z(G) \neq \phi$ Suppose $f, g \in Z(G).$ Then for any $h \in G$ $hfg^{-1} = fhg^{-1} = fg^{-1}ghg^{-1} = fg^{-1}hgg^{-1} = fg^{-1}h,$ so $fg^{-1} \in Z(G).$ $\therefore f \in Z(G)$ hf = fh. $\underline{h} \cdot f \cdot g' = f \cdot h \cdot g' = f \cdot g' \cdot g \cdot g' - f \cdot g' \cdot h \cdot g \cdot g$ Z(G)

Centre of a Group

Lemma

Suppose G is a group and $x \in G$. Then $x \in Z(G)$ if and only if x lies in a conjugacy class of itself.

Proof.

Suppose x is in its own conjugacy class. This means that

$$gxg^{-1} = x$$
, $\forall g \in G \Leftrightarrow gx = xg$, $\forall g \in G \leftrightarrow x \in Z(G)$

$$\begin{array}{l} \Leftarrow g \chi g^{T} = \chi \Rightarrow g \chi = \chi g \Rightarrow \chi \in Z(G) \\ \Rightarrow \chi \in Z(G) \Rightarrow h \chi = \chi h \quad for any \quad h \in G \\ \chi = h^{T} \chi h \quad \equiv \Rightarrow \chi \sim_{G} \chi \end{array}$$

Conjugacy in S_n

Proposition

Suppose $n \geq 3$. Then $Z(S_n) = \{id\}$. Proof: We know id $\in Z(S_n)$, so we just need to show that if $g \in S_n$ and $g \neq id$ then $g \notin Z(\mathcal{S}_n)$, i.e. there is some $h \in \mathcal{S}_n$ such that $gh \neq hg$. Since $g \neq id$, we can find $a \neq b \in \{1, \dots, n\}$ such that $g \cdot a = b$. Let $c \in \{1, \dots, n\}$ be different from a and b, and let h = (bc). Then **Thans Position** $gh \cdot a = g \cdot a = b,$ $hg \cdot a = h \cdot b = c,$ h(b)=c h(q)=qso $gh \neq hg$. h(c) = hg.h(a) = g.a = bh(2) = 2 $hg(a) = h \cdot b = C$

Conjugacy in S_n

Definition

Suppose $f \in S_n$, written in disjoint cycle notation. The **cycle type** of f is the list of the lengths of the cycles of f, written in decreasing order.

Example: $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 4 & 8 & 1 & 3 & 5 & 2 & 7 & 9 & 6 \end{pmatrix} = (143)(2896) = (4311)$ In S_9 , the permutation (143)(2896) has cycle type (4,3,1,1). Notice in particular that

the cycle lengths must be written in decreasing order, and we include cycles of length 1 (even though we usually don't write them when we're writing down the permutation).

Theorem Suppose $f, g \in S_n$. Then $f \sim_{S_n} g$ if and only if f and g have the same cycle type. Big Idea Conjugate permutations have the same structure. Such permutations are the same up to renumbering.

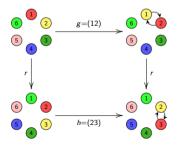
Conjugacy in $S_n = 6 \times 5 \times 4 \times 3 \times 2$

Consider the following permutations in $G = S_6$:

g = (1 2) 🚩	1 2 3 4 5 6
h = (2 3)	1 2 3 4 5 6
r = (1 2 3 4 5 6)	1 2 3 4 5 6

Since g and h have the same cycle type, they are conjugate: $(1 \ 2 \ 3 \ 4 \ 5 \ 6)$ $(3 \ 3)$ $(1 \ 6 \ 5 \ 4 \ 3 \ 2) = (1 \ 2)$.

Here is a visual interpretation of $g = rhr^{-1}$:



Conjugacy in S_n

=>Theorem Suppose $f, g \in S_n$. Then $f \sim_{S_n} g$ if and only if f and g have the same cycle type. Proof: Suppose f and g are conjugate, I h E Sn S. Wat g= bfb => b gh = f het (91, ... an) is the cycle type of f. , $f \cdot 9n = q$, $f \cdot q_1 = q_2, \quad f \cdot q_2 = q_3, \dots$ this gives b⁻¹.g.b. 9,= B.2 b⁻¹.g.b. 9.2=93. $b'. gb. gn = q_1$ Apply to on both Sides of all

Conjugacy in S_n we have

 $g(k.a_1) = ha_2$ $g(k.a_2) = ha_3$..., $g(k.a_n) = ha_1$ => (k.a., baz..., ban) is a cycle type of g. this means for every cycle type of f, there is a coursesponding cycle of g of same lengthe. E conversely, of f, g have some cycle type, we paired up the cycle (a,...an) of f with the cycle (bi, big..., br) of g, and define h. qi=bi for eachi. g(bi)=bi g(bi)=b3 hfh' bi = hf.qi

 $= ka_{i+1} = bi+1 = g \cdot bi$ ams Style Questions Conjugacy classes of S_3 : $f_1 : \{1, \dots, n\} \longrightarrow \{1, \dots, n\}$ because each no appears \Rightarrow bijection $\{id, \{(12), (23), (13)\}, \{(123), (213)\}\}$ xmxma**Exams Style Questions Conjugacy classes of** S_4 : be 31,...nf $\left\{ id, \{(12), (23), (13), (14)\}, \{(123), (213), 413\} \cdots \right\}$ bfb=g. id, transpositions, (12)(34), 3 -cycles, 4 -cylces

Example: In S_3 the elements (1 2 3) and (1 3 2) are conjugate.

Transpositions are conjugate: $\{(12), (13), (23)\}$.

Identity element is a conjugate class.

Solution: (12)
$$\sim s_3$$
 (13) find out h?
 $f = g$
 $(23)(12)(23)^{-1} = (23)(12)(23) = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = (13) = 2 = 23)$
 $f = (12 - 3)^{-1} = (23)(12)(23) = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = (13) = 2 = (13)^{-1}$
 $f = (12 - 3)^{-1} = (23)$
 $g = (13 - 2)^{-1} = (23)^{-1}$
 $g = (23)^{-1} = (23)^{-1} = (23)^{-1}$
 $g = (23)^{-1} = (23)^{-1} = (23)^{-1} = (23)^{-1} = (23)^{-1} = (23)^{-1} = (23)^{-1} = (23)^{-1} = (23)^{-1} = (23)^{-1} = (23)^{-1} = (23)^{-1} = (23)^{-1} = (23)^{-1} = (23)^{-1} = (23)^{-1} =$

(12) Jum

Example: In S_9 , find g such that $g = kfk^{-1}$

f = (1356)(28)(497) and

$$g = kfk^{-1} = (4682)(15)(397)$$

What are the conjugacy classes of $Q_8 = \{1, -1, i, -i, j, -j, k, -k\}$.

Solution:

{1}
{-1}
{i, -i}
{j, -j}

 $\{k, -k\}$

Question: Write few elements of Conjugacy class of (13)(4679) in \mathcal{S}_9

Solution: Here is the list of some elements that belong to conjugacy class of (13)(4679).

(2 4)(5781) transposition (24) and 4 -cycle (5781)
(56)(2983)
(18)(2347)

Question: In this question we work with the group

 $\mathcal{U}_{21} = \{1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20\}.$

- Find order of 5.
- **2** Hence find an element of order 3, and a subgroup H of order 3.
- **③** Find all the right cosets of H in U_{21} .

Solution:

- **(**) We calculate $5^2 = 4$, $5^3 = 20$, $5^4 = 16$, $5^5 = 17$, $5^6 = 1$, so order of 5 = 6.
- Since 5 has order 6, 5² = 4 has order 3. So H = (4) = {1,4,16} is a subgroup of order 3.

3

$$\begin{split} & H1 = \{1,4,16\}, \\ & H5 = \{5,20,17\}, \\ & H2 = \{2,8,11\}, \\ & H10 = \{10,19,13\}. \end{split}$$

(We know we've found all the right cosets because we've written each element of \mathcal{U}_{21} once.)

Question:

Consider the following permutations:

$$a = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 2 & 8 & 4 & 3 & 6 & 7 & 5 & 1 \end{pmatrix}, \qquad b = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 7 & 1 & 3 & 2 & 5 & 6 & 8 & 4 \end{pmatrix}.$$

Write down the disjoint cycle notation for *a* and *b*, and also for *ab*, *ba*, a^{-1} , b^{-1} , $(aba)^{-1}$ and $b^{-1}ab$. Which of these permutations lie in A_8 ?

$$a = (128)(34)(567)$$

$$b = (17842)$$

$$ab = (1567)(348)$$

$$ba = (243)(5687)$$

$$a^{-1} = (182)(34)(576)$$

$$aba^{-1} = (13825)$$

$$b^{-1} = (12487)$$

$$b^{-1}ab = (156)(247)(38).$$

QMplus Quiz

Attempt Quiz 4 at QMplus page

Some Useful Notations

Throughout this course, we use the following notation.

- C_n denotes the cyclic group of order n.
- Klein group often symbolized by the letter V₄ or as K₄ = ℤ₄ × ℤ₄ denotes the group {1, a, b, c}, with group operation given by

$$a^2 = b^2 = c^2 = 1$$
, $ab = ba = c$, $ac = ca = b$, $bc = cb = a$.

• U_n is the set of integers between 0 and *n* which are prime to *n*, with the group operation being multiplication modulo *n*.

Some Useful Notations

• \mathcal{D}_{2n} is the group with 2n elements

1,
$$r, r^2, \ldots, r^{n-1}, s, rs, r^2s, \ldots, r^{n-1}s$$
.

The group operation is determined by the relations $r^n = s^2 = 1$ and $sr = r^{n-1}s$.

- S_n denotes the group of all permutations of $\{1, \ldots, n\}$, with the group operation being composition.
- $GL_n(\mathbb{R})$ is the group of $n \times n$ invertible matrices with entries in \mathbb{R} , with the group operation being matrix multiplication.
- \mathcal{Q}_8 is the group $\{1,-1,i,-i,j,-j,k,-k\}$, in which

$$i^2 = j^2 = k^2 = -1$$
, $ij = k$, $jk = i$, $ki = j$, $ji = -k$, $kj = -i$, $ik = -j$.