

Group Theory

Week 4, Lecture 1, 2 & 3

Dr Lubna Shaheen

Table of Contents

- Cosets
 - Coset Lemma
 - Lagrange's Theorem
- 2 Conjugacy
- Centre of a Group
- **4** Conjugacy in S_n

Definition of Cosets

Definition

Let H be a subgroup of the group G whose operation is written multiplicatively (juxtaposition denotes the group operation). Given an element g of G, the left cosets of H in G are the sets obtained by multiplying each element of H by a fixed element g of G (where g is the left factor).

 $gH = \{gh : h \text{ an element of H}\} \text{ for } g \text{ in } G.$

The right cosets are defined similarly, that is,

 $Hg = \{hg : h \text{ an element of H}\} \text{ for } g \text{ in } G.$

Cosets: Example

Example: Let G be the dihedral group of order six. Its elements may be represented by $\{I, a, a^2, b, ab, a^2b\}$. In this group, $a^3 = b^2 = I$ and $ba = a^2b$. This is enough information to fill in the entire Cayley table:

*	I	a	a^2	b	ab	a^2b
I	I	а	a^2	b	ab	a^2b
а	а	a^2	I	ab	a^2b	b
a^2	a^2	I	а	a^2b	b	ab
b	b	a^2b	ab	I	a^2	а
ab	ab	b	a^2b	а	I	a^2
a^2b	a^2b	ab	b	a^2	а	I

Let **T** be the subgroup $\{I, b\}$. The left cosets of T are: $IT = T = \{I, b\}$, $aT = \{a, ab\}$, and $a^2T = \{a^2, a^2b\}$. The right cosets of T are: $TI = T = \{I, b\}$, $Ta = \{a, ba\} = \{a, a^2b\}$ and $Ta^2 = \{a^2, ba^2\} = \{a^2, ab\}$.

Let \mathbf{H} be the subgroup $\{I, a, a^2\}$. The left cosets of H are IH = H and $bH = \{b, ba, ba^2\}$. The right cosets of H are HI = H and $Hb = \{b, ab, a^2b\} = \{b, ba^2, ba\}$. In this case, every left coset of H is also a right coset of H? Why?

Cosets: Example

Example: Take $G = S_3$, $H = \langle (12) \rangle = \{id, (12)\}$ and g = (23). Then $Hg = \{(23), (123)\}, gH = \{(23), (132)\}.$

Remark:

(i) H is always a right coset of itself, since

$$H1 = \{h1|h \in H\} = \{h|h \in H\} = H.$$

(ii) We can have Hf = Hg even when $f \neq g$.

For example, let $G = \mathcal{C}_6 = \{1, z, z^2, z^3, z^4, z^5\}$. Then $H = \{1, z^3\}$ is a subgroup. We have $Hz = \{z, z^4\}$, and also $Hz^4 = \{z, z^4\}$. We can see that Hf = Hg.

Cosets: Proposition

Proposition

Suppose G is a group, $H \leq G$ and $f, g \in G$.

- 1. |Hg| = |H|.
- 2. If $f \in Hg$, then Hf = Hg.
- 3. Each element of G is contained in exactly one right coset of H.

Cosets: Proposition

Cosets: Proposition

Example

Take $G = D_8$ and $H = \{1, rs\}$. Then the right cosets are

$$H1 = \{1, rs\}$$
 $Hr = \{r, s\}$
 $Hr^2 = \{r^2, r^3 s\}$
 $Hr^3 = \{r^3, r^2 s\}$

Cosets: Coset Lemma

Coset lemma

Suppose G is a group, $H \leq G$ and $f, g \in G$. Then:

- (i) Hf = Hg if and only if $fg^{-1} \in H$;
- (ii) fH = gH if and only if $f^{-1}g \in H$.

Cosets

Proposition

If G is a group and $H \leq G$, then the number of right cosets of H is equal to the number of left cosets of H.

Cosets

Lagrange's Theorem

Definition

Suppose G is a group and $H \leq G$. The index of H in G is the number of right cosets of H in G, written as |G:H|.

Lagrange's Theorem

Suppose G is a group and $H \leq G$. Then |G| = |H||G : H|. In particular, if G is finite then |H| divides |G|.

Proof of Lagrange's Theorem

Lagrange's Theorem

Example: $G = \mathbb{Z}$, $H = 3\mathbb{Z}$.

$$[G:H]=[\mathbb{Z}:3\mathbb{Z}]=3$$

The cosets of H in \mathbb{Z} are of the form:

$$g + H = \{g + h | h \in H\} = \{g + 3k | k \in \mathbb{Z}\}$$

where $g \in \mathbb{Z}$.

Thus the distinct cosets of $3\mathbb{Z}$ in \mathbb{Z} are:

- (i) $0 + 3\mathbb{Z} = \{0, 3, 6, 9, \cdots\}$
- (ii) $1 + 3\mathbb{Z} = \{1, 4, 7, 10, \cdots\}$
- (iii) $2 + 3\mathbb{Z} = \{2, 5, 8, 11, \cdots\}$

Lagrange's Theorem

Example Dihedral group \mathcal{D}_8 :

Consider the dihedral group \mathcal{D}_8 , which represents the symmetries of a square. The order of 8. The elements of \mathcal{D}_8 consist of 4 rotations and 4 reflections.

Let $H=\{e,r,r^2,r^3,\}$, where e is the identity and r,r^2,r^3 are the rotations by 90° , 180° , and 270° . This is a subgroup of \mathcal{D}_8 (the group of rotations), and its order is 4 Since 4 divides 8, Lagrange's Theorem holds for this example.

No of cosets of H in \mathcal{D}_8 are 2, which are

$$H = \{1, r, r^2, r^3\}$$
 and $Hs = \{s, rs, r^2s, r^3s\}$

Symmetric Group S_3 : Consider the symmetric group S_3 , which is the group of all permutations of 3 elements. The order of S_3 is 6. The elements of S_3 are: $S_3 = \{e, (12), (13), (23), (123), (132)\}$. Now, consider the subgroup $H = \{e, (12)\}$. This is a subgroup of S_3 , and the order of H is 2. According to Lagrange's Theorem, the order of H must divide the order of H is true. The list of right cosets of H is

$$H = \{e, (12)\}, \{(13), (132)\}, \text{ and } \{(23), (123)\}$$

Corollary

Corollary

Suppose G is a finite group and $g \in G$. Then ord(g) divides |G|.

Euler's Theorem

Applications in Number Theory

$$\mathcal{U}_n = (\mathbb{Z}/n\mathbb{Z})^{\times}$$

Invertible residues mod n.

 $|\mathcal{U}_n| = \Phi(n) = \text{no of residues coprime to } n.$

Pick a residues $x \in \mathcal{U}_n$ it generates a cyclic subgroup

$$\langle x \rangle = \{1, x, x^2, \cdots x^{ord(x)-1}\}$$

of order ord(g).

 $Ord(g) | \Phi(n) \implies x^{\Phi(n)} = 1.$

In other words

If x is coprime to n, then $x^{\Phi(n)} \equiv 1 \mod(n)$.

Euler's Theorem

Example:

$$3^4 = 81 \equiv 1 \mod (8)$$

$$\varphi(8) = |\{1, 3, 5, 7, \}| = 4$$

If n = p is prime, then $\varphi(n) = p - 1$, $X^{p-1} \equiv 1 \mod p \Leftrightarrow X^P - X$ is divisible by p.

For example $X^7 - X$ is divisible by 7, $2^7 - 2 = 128 - 2 = 126 = 7.18$.

Lagrange's Theorem

Corollary: If $g \in G$ then or(g)||G|.

Example

 S_n is symmetric group. $|S_n|=n!$. , $\mathcal{A}_n=<\mathcal{S}_n$ group of even permutation.

$$[S_n:A_n]=2$$

Which right cosets do we know.

$$A_n$$
 all the even permutation

Coset of $A_n(12) = \text{ odd permutations}$

$$[\mathcal{S}_n:\mathcal{A}_n]=rac{|\mathcal{S}_n|}{|\mathcal{A}_n|}$$

Definition

Suppose G is a group and $f,g\in G$. We say that f is conjugate to g in G (written $f\sim_G g$) if there is $k\in G$ such that $kfk^{-1}=g$.

Lemma

Suppose G is a group then \sim_G is an equivalence relation.

Proof.

- Reflexive: $x = exe^{-1}$
- 2 Symmetric: $x = gyg^{-1} \implies y = g^{-1}xg$.
- **3** Transitive: $x = gyg^{-1}$ and $y = hzh^{-1} \implies x = (gh)z(gh)^{-1}$

Conjugacy in \mathcal{D}_8

Example: Dehidral group of order 8 In this case the conjugacy classes

correspond to "types of symmetry":

- r and r^3 are both 90° rotations;
- r^2 is the only 180° rotation;
- s and r^2s are both reflections in axes parallel to the sides of the square;
- rs and r^3s are both reflections in diagonals of the square.

Conjugacy classes in D_8

Conjugacy classes in \mathcal{D}_8 are

$$\left\{\{1\},\{r,r^3\},\{r^2\},\{s,r^2s\},\{rs,r^3s\}\right\}$$

The elements r and r^3 are conjugate to each other. Reflections s and sr conjugate r to r^3 , but r and r^3 are not conjugate to other elements of the group.

$$srs^{-1} = r^3$$

 $rsr^{-1} = sr^2$
 $rsrr^{-1} = sr^3$

The element r^2 is in its own conjugacy class.

Conjugacy classes in D_{10}

Exercise: Find the conjugacy classes of D_{10} .

Elements of D_{10} can be written as:

Rotations: $\{e, r, r^2, r^3, r^4\}$ where r represents a rotation by $2\pi/5(72^\circ)$ degree, and e is the identity (rotation by 0 degrees).

Reflections: $\{s, sr, sr^2, sr^3, sr^4\}$ where each s represents a reflection across a line of symmetry through a vertex or an edge.

W can write
$$D_{10} = \left\{ \{e\}, \{r^2\}, \{r, r^3\}, \{s, r^2s\}, \{r, r^3s\} \right\}$$

It turns out that:

Conjugacy class of $r = \{r, r^4\}$, $srr^{-1} = r^4$ Conjugacy class of $r^2 = \{r^2, r^3\}$, $sr^2s^{-1} = r^4$

The rotations split into two conjugacy classes: $\{r, r^2\}$ and $\{r^2, r^3\}$ as the as the elements r and r^4 are conjugate to each other, and similarly r^2 and r^3 are conjugate to each other.

Reflections: All reflections in D_{10} are conjugate to each other. Conjugating any reflection by a rotation produces another reflection:

Conjugacy class of reflections = $\{s, sr, sr^2, sr^3, sr^4\}$

This means all 5 reflections form a single conjugacy class.

Thus, the group D_{10} has four distinct conjugacy classes.

- 1) $\{e\}$ (the identity element), 2) $\{r, r^4\}$ (rotations by 72° and 288°), 3) $\{r^2, r^3\}$ (rotations by 144° and 216°
- 4) $\{s, sr, sr^2, sr^3, sr^4\}$ (all reflections)

Centre of a Group

Definition

If G is a group, the **centre** of G is

$$Z(G) = \Big\{ g \in G | hg = gh \text{ for all } h \in G \Big\}.$$

- Suppose G is abelian. Then hg = gh for all g, h, so Z(G) = G.
- Let's find the centre of

$$\mathcal{Q}_8 = \left\{1, -1, i, -i, j, -j\right\}.$$

Certainly $1 \in Z(\mathcal{Q}_8)$, because 1g = g = g1 for all g. Also $-1 \in Z(\mathcal{Q}_8)$, because -1 changes the sign of everything whether we multiply it from the left or the right.

 $ij \neq ji$, which means that neither i nor j is in $Z(\mathcal{Q}_8)$. Similarly we can show $-i, -j, k, -k \notin Z(\mathcal{Q}_8)$. So $Z(\mathcal{Q}_8) = \{1, -1\}$.

Centre of a Group

Proposition

If G is a group, then $Z(G) \leq G$.

Solution:

• For any $h \in G$ we have

$$h1 = h = 1h$$
,

so $1 \in Z(G)$.

• Suppose $f, g \in Z(G)$. Then for any $h \in G$

$$hfg^{-1} = fhg^{-1} = fg^{-1}ghg^{-1} = fg^{-1}hgg^{-1} = fg^{-1}h,$$

so $fg^{-1} \in Z(G)$.

Centre of a Group

Lemma

Suppose G is a group and $x \in G$. Then $x \in Z(G)$ if and only if x lies in a conjugacy class of itself.

Proof.

Suppose x is in its own conjugacy class. This means that

$$gxg^{-1} = x$$
, $\forall g \in G \Leftrightarrow gx = xg$, $\forall g \in G \leftrightarrow x \in Z(G)$

Proposition

Suppose $n \ge 3$. Then $Z(S_n) = \{id\}$.

Proof:

We know id $\in Z(S_n)$, so we just need to show that if $g \in S_n$ and $g \neq$ id then $g \notin Z(S_n)$, i.e. there is some $h \in S_n$ such that $gh \neq hg$.

Since $g \neq \text{id}$, we can find $a \neq b \in \{1, ..., n\}$ such that $g \cdot a = b$. Let $c \in \{1, ..., n\}$ be different from a and b, and let b = (bc). Then

$$gh \cdot a = g \cdot a = b,$$
 $hg \cdot a = h \cdot b = c,$

so $gh \neq hg$.

Definition

Suppose $f \in \mathcal{S}_n$, written in disjoint cycle notation. The **cycle type** of f is the list of the lengths of the cycles of f, written in decreasing order.

Example:

In S_9 , the permutation (143)(2896) has cycle type (4,3,1,1). Notice in particular that the cycle lengths must be written in decreasing order, and we include cycles of length 1 (even though we usually don't write them when we're writing down the permutation).

Theorem

Suppose $f,g \in S_n$. Then $f \sim_{S_n} g$ if and only if f and g have the same cycle type.

Big Idea

Conjugate permutations have the same structure. Such permutations are the same up to renumbering.

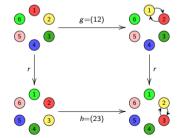
Consider the following permutations in $G = S_6$:

$$g = (1 \ 2)$$
 1 2 3 4 5 6
 $h = (2 \ 3)$ 1 2 3 4 5 6
 $r = (1 \ 2 \ 3 \ 4 \ 5 \ 6)$ 1 2 3 4 5 6

Since g and h have the same cycle type, they are conjugate:

$$(1 2 3 4 5 6)(2 3)(1 6 5 4 3 2) = (1 2).$$

Here is a visual interpretation of $g = rhr^{-1}$:



Theorem

Suppose $f,g \in S_n$. Then $f \sim_{S_n} g$ if and only if f and g have the same cycle type.

Proof:

Conjugacy classes of S_3 :

$$\left\{id, \{(12), (23), (13)\}, \{(123), (213)\}\right\}$$

xmxma

Conjugacy classes of \mathcal{S}_4 :

$$\left\{id, \{(12), (23), (13), (14)\}, \{(123), (213), 413\} \cdots \right\}$$

id, transpositions, (12)(34), 3 -cycles, 4 -cylces

Example: In S_3 the elements (1 2 3) and (1 3 2) are conjugate.

Transpositions are conjugate: $\{(12), (13), (23)\}.$

Identity element is a conjugate class.

Example: In S_9 , find g such that $g = kfk^{-1}$

f = (1356)(28)(497) and

$$g = kfk^{-1} = (4682)(15)(397)$$

What are the conjugacy classes of $Q_8 = \{1, -1, i, -i, j, -j, k, -k\}$.

Solution:

- **1 1**
- **3** $\{i, -i\}$
- **4** $\{j, -j\}$
- $\{k, -k\}$

Question: Write few elements of Conjugacy class of (13)(4679) in \mathcal{S}_9

Solution: Here is the list of some elements that belong to conjugacy class of (13)(4679).

- **1** (2 4)(5781) transposition (24) and 4 -cycle (5781)
- **②** (56)(2983)
- **(18)(2347)**

Question: In this question we work with the group

 $\mathcal{U}_{21} = \{1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20\}.$

- Find order of 5.
- $oldsymbol{\circ}$ Hence find an element of order 3, and a subgroup H of order 3.
- **③** Find all the right cosets of H in \mathcal{U}_{21} .

Solution:

- We calculate $5^2 = 4$, $5^3 = 20$, $5^4 = 16$, $5^5 = 17$, $5^6 = 1$, so order of 5 = 6.
- ② Since 5 has order 6, $5^2=4$ has order 3. So $H=\langle 4\rangle=\{1,4,16\}$ is a subgroup of order 3.
- 3

$$H1 = \{1, 4, 16\},\ H5 = \{5, 20, 17\},\ H2 = \{2, 8, 11\},\ H10 = \{10, 19, 13\}.$$

(We know we've found all the right cosets because we've written each element of \mathcal{U}_{21} once.)

Question:

Consider the following permutations:

$$a = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \downarrow & \downarrow \\ 2 & 8 & 4 & 3 & 6 & 7 & 5 & 1 \end{pmatrix}, \qquad b = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \downarrow & \downarrow \\ 7 & 1 & 3 & 2 & 5 & 6 & 8 & 4 \end{pmatrix}.$$

Write down the disjoint cycle notation for a and b, and also for ab, ba, a^{-1} , b^{-1} , $(aba)^{-1}$ and $b^{-1}ab$. Which of these permutations lie in \mathcal{A}_8 ?

$$a = (128)(34)(567)$$

$$b = (17842)$$

$$ab = (1567)(348)$$

$$ba = (243)(5687)$$

$$a^{-1} = (182)(34)(576)$$

$$aba^{-1} = (13825)$$

$$b^{-1} = (12487)$$

$$b^{-1}ab = (156)(247)(38)$$

QMplus Quiz

Attempt Quiz 4 at QMplus page

Some Useful Notations

Throughout this course, we use the following notation.

- C_n denotes the cyclic group of order n.
- Klein group often symbolized by the letter \mathcal{V}_4 or as $\mathcal{K}_4 = \mathbb{Z}_4 \times \mathbb{Z}_4$ denotes the group $\{1, a, b, c\}$, with group operation given by

$$a^2 = b^2 = c^2 = 1$$
, $ab = ba = c$, $ac = ca = b$, $bc = cb = a$.

• U_n is the set of integers between 0 and n which are prime to n, with the group operation being multiplication modulo n.

Some Useful Notations

• \mathcal{D}_{2n} is the group with 2n elements

1,
$$r$$
, r^2 , ..., r^{n-1} , s , rs , r^2s , ..., $r^{n-1}s$.

The group operation is determined by the relations $r^n = s^2 = 1$ and $sr = r^{n-1}s$.

- S_n denotes the group of all permutations of $\{1, \ldots, n\}$, with the group operation being composition.
- $GL_n(\mathbb{R})$ is the group of $n \times n$ invertible matrices with entries in \mathbb{R} , with the group operation being matrix multiplication.
- Q_8 is the group $\{1, -1, i, -i, j, -j, k, -k\}$, in which

$$i^2 = j^2 = k^2 = -1$$
, $ij = k$, $jk = i$, $ki = j$, $ji = -k$, $kj = -i$, $ik = -j$.