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Definition of Cosets

Definition

Let H be a subgroup of the group G whose operation is written multiplicatively
(juxtaposition denotes the group operation). Given an element g of G, the left cosets
of H in G are the sets obtained by multiplying each element of H by a fixed element g
of G (where g is the left factor).

gH = {gh : h an element of H} for g in G.
The right cosets are defined similarly, that is,

Hg = {hg: h an element of H} for g in G.




Cosets: Example

Example: Let G be the dihedral group of order six. Its elements may be represented by
{I,a,a% b, ab,a?b}. In this group, a®> = b?> = | and ba = a?b. This is enough information to
fill in the entire Cayley table:

« | Tl a a2 b | ab a2 Let T be the subgroup {/, b}. The left cosets
- . of T are: IT =T = {l, b},
I |I |a a° |b ab |ab aT = {a,ab}, and a*T = {a°,a%b}. The

-

2 la |2 I lab &blb right cosets of T are: T/ =T ={l, b},

Ta = {a, ba} = {a,a’b} and

a2 |a*> |[I a |a*h b |ab Ta? = {a%, ba®} = {22, ab}.
2 2
b |b |ab|ab I |a° |a Let H be the subgroup {/, a,a*}. The left
ab lab b a*hla I |d* cosets of H are IH = H and
2 a2 lab 1 |a2 la 7 bH = {b, ba, ba®}. The riggt cosets of I;I are
Hl = H and Hb = {b, ab, a*b} = {b, ba*, ba}.

In this case, every left coset of H is also a
right coset of H? Why?



Cosets: Example
Example: Take G = S3, H = <(12)> = {id,(12)} and g = (23). Then
Hg ={(23), (123)}, gH = {(23), (132)}.

Remark:
(i) H is always a right coset of itself, since

H1 = {hllhe H} ={hlhe H} = H.
(ii) We can have Hf = Hg even when f # g.

For example, let G = Cg = {1,2,2%,23,z% z°}. Then H = {1,223} is a subgroup. We
have Hz = {z,z*}, and also Hz* = {z, z*}. We can see that Hf = Hg.



Cosets: Proposition

Proposition

Suppose G is a group, H < G and f, g € G.

1. |Hg| = |H|.

2. If f € Hg, then Hf = Hg.

3. Each element of G is contained in exactly one right coset of H.




Cosets: Proposition



Cosets: Proposition

Example
Take G = Dg and H = {1, rs}. Then the right cosets are

H1={1,rs}
Hr = {r,s}
Hr? = {r? r3s}

Hr® = {r? r’s}




Cosets: Coset Lemma

Coset lemma

Suppose G is a group, H < G and f,g € G. Then:
(i) Hf = Hg if and only if fg~1 € H;

(i) fH = gH if and only if f~1g € H.




Cosets

Proposition

If G is a group and H < G, then the number of right cosets of H is equal to the
number of left cosets of H.




Cosets



Lagrange’s Theorem
Definition

Suppose G is a group and H < G. The index of H in G is the number of right cosets
of Hin G, written as |G : H|.

Lagrange's Theorem

Suppose G is a group and H < G. Then |G| = |H||G : H|. In particular, if G is finite
then |H| divides |G]|.




Proof of Lagrange’s Theorem



Lagrange’s Theorem

Example: G =7, H = 3Z.

[G:H|=[Z2:3Z]=3
The cosets of H in Z are of the form:

g+H={g+hheH}={g+3klkeZ}
where g € Z.
Thus the distinct cosets of 3Z in Z are:
(i) 0+3Z=1{0,3,6,9,---}
(i) 14+ 3Z={1,4,7,10,--- }
(i) 24 3Z = {2,5,8,11,---}



Lagrange’s Theorem
Example Dihedral group Ds:
Consider the dihedral group Dg , which represents the symmetries of a square. The
order of 8. The elements of Dg consist of 4 rotations and 4 reflections.
Let H = {e,r,r?,r3 }, where e is the identity and r, r?, r3 are the rotations by 90°,
180°, and 270°. This is a subgroup of Dg (the group of rotations), and its order is 4
Since 4 divides 8, Lagrange’s Theorem holds for this example.
No of cosets of H in Dg are 2, which are

H=1{1,r,r* r3} and Hs = {s,rs,r’s, r’s}

Symmetric Group S3: Consider the symmetric group Ss, which is the group of all
permutations of 3 elements. The order of S3 is 6. The elements of S3 are:

Sz = {e,(12),(13),(23),(123), (132)}. Now, consider the subgroup H = {e, (12)}.
This is a subgroup of 83, and the order of H is 2. According to Lagrange's Theorem,
the order of H must divide the order of S3, which is true. The list of right cosets of H is

H = {e, (12)},{(13), (132)}, and {(23),(123)}



Corollary

Corollary
Suppose G is a finite group and g € G. Then ord(g) divides |G]|.




Euler’s Theorem
Applications in Number Theory

Un = (Z/nZ)*
Invertible residues mod n.
|Un| = ®(n) = no of residues coprime to n.
Pick a residues x € U, it generates a cyclic subgroup
<X> _ {1,X,X2, . _Xord(x)—l}
of order ord(g).
Ord(g) |#(n) = x®(M =1,

In other words
If x is coprime to n, then x®(") =1 mod(n).



Euler’'s Theorem

Example:

3*=81=1mod (8)

©(8) =1{1,3,5,7,}| =4
If n= pis prime, then (n) = p —1, XP~! = 1mod p < X — X is divisible by p.
For example X7 — X is divisible by 7, 27 —2 = 128 — 2 = 126 = 7.18.



Lagrange’s Theorem
Corollary: If g € G then or(g)||G|.

Example

Sy is symmetric group. |S,| = n!. , A, =< S, group of even permutation.

[Sh:Ap]l =2

Which right cosets do we know.

A, all the even permutation

Coset of A,(12) = odd permutations

[Snl
| A

[Sn: An] =




Conjugacy
Definition
Suppose G is a group and f, g € G. We say that f is conjugate to g in G (written
f ~c g) if there is k € G such that kfk—1 = g.

Lemma
Suppose G is a group then ~¢ is an equivalence relation.

Proof.

O Reflexive: x = exe™!

= y=g'xg

and y = hzh™! = x = (gh)z(gh)*

@ Symmetric: x = gyg™

@ Transitive: x = gyg~!




Conjugacy



Conjugacy in Dg
Example: Dehidral group of order 8 In this case the conjugacy classes
correspond to “types of symmetry":
e r and r? are both 90° rotations;
r? is the only 180° rotation;

°
@ s and r?s are both reflections in axes parallel to the sides of the square;
e rs and r3s are both reflections in diagonals of the square.

Conjugacy classes in Dg
Conjugacy classes in Dg are

RS RE N RS

The elements r and r3 are conjugate to each other. Reflections s and sr conjugate r
to r3, but r and r3 are not conjugate to other elements of the group.



Conjugacy

rsrrt =
The element r? is in its own conjugacy class.



Conjugacy
Conjugacy classes in Dyg
Exercise: Find the conjugacy classes of Dig.

Elements of Dip can be written as:

Rotations: {e,r,r?, r3 r*} where r represents a rotation by 27/5(72°) degree, and e
is the identity (rotation by O degrees).

Reflections: {s,sr,sr?, sr3, sr*} where each s represents a reflection across a line of
symmetry through a vertex or an edge.

W can write Djp = {{e}7 {r2Y {r, 3}, {s, r?s}, {r, r3s}}



Conjugacy

It turns out that:

Conjugacy class of r = {r, r*}, srr=t = r*

Conjugacy class of r> = {r? r3}, sr?s71 = r*

The rotations split into two conjugacy classes: {r, r?} and {r?,r3} as the as the
elements r and r* are conjugate to each other, and similarly r? and r3 are conjugate to

each other.

Reflections: All reflections in Djg are conjugate to each other. Conjugating any
reflection by a rotation produces another reflection:

Conjugacy class of reflections = {s, sr, sr?, sr3, sr*}

This means all 5 reflections form a single conjugacy class.

Thus, the group Dig has four distinct conjugacy classes.

1) {e} (the identity element), 2) {r, r*} (rotations by 72° and 288°), 3) {r?, r}
(rotations by 144° and 216°
4) {s,sr,sr? sr3 sr*} (all reflections)




Centre of a Group
Definition
If G is a group, the centre of G is

Z(G) = {g € G|lhg = ghfor all h e G}.

@ Suppose G is abelian. Then hg = gh for all g, h, so Z(G) = G.
@ Let's find the centre of

QB = {17_17’5_131’_./}

Certainly 1 € Z(Qg), because 1g = g = g1 for all g. Also —1 € Z(Qs), because
—1 changes the sign of everything whether we multiply it from the left or the
right.

ij # ji, which means that neither i nor j is in Z(Qg). Similarly we can show

—i,—j, k,—k ¢ Z(Qs). So Z(Qs) = {1, -1}.



Centre of a Group

Proposition
If G is a group, then Z(G) < G.

Solution:
@ For any h € G we have
hl = h=1h,

so1le Z(G).
@ Suppose f,g € Z(G). Then forany h€ G

hfg™! = fhg™ = fg 'ghg™! = fg"'hgg ™' = fg ™ h,
so fg~1 € Z(G).



Centre of a Group

Lemma
Suppose G is a group and x € G. Then x € Z(G) if and only if x lies in a conjugacy
class of itself.

Proof.

Suppose x is in its own conjugacy class. This means that

gxg l=x, VgeGeogi=xg, VYgeGexelZG)




Conjugacy in S,
Proposition
Suppose n > 3. Then Z(S,) = {id}.
Proof:

We know id € Z(S,), so we just need to show that if g € S, and g # id then
g ¢ Z(Sn), i.e. there is some h € S, such that gh # hg.

Since g #id, we can find a# b€ {1,...,n} such that g-a=b. Let c € {1,...

be different from a and b, and let h = (bc). Then
gh-a=g-a=b, hg-a=h-b=c,

so gh # hg.




Conjugacy in §,
Definition
Suppose f € S,, written in disjoint cycle notation. The cycle type of f is the list of
the lengths of the cycles of f, written in decreasing order.

Example:

In Sg, the permutation (14 3)(2896) has cycle type (4,3,1,1). Notice in particular that
the cycle lengths must be written in decreasing order, and we include cycles of length 1
(even though we usually don't write them when we're writing down the permutation).

Theorem
Suppose f,g € S,. Then f ~s, g if and only if f and g have the same cycle type.

Big ldea
Conjugate permutations have the same structure. Such permutations are the
same up to renumbering.




Conjugacy in §,

Consider the following permutations in G = S:

g=1(12) 172 3 4 5
h=(23) 1 273 4 s
r=(123456) 1T T T T

Since g and h have the same cycle type, they are conjugate:

(123456)(23)(165432)=(12).

Here is a visual interpretation of g = rhr—":

0% .o 0%

©g® ©g®
©%e 0®
0,0 @ @,



Conjugacy in S,

Suppose f,g € S,. Then f ~gs,_ g if and only if f and g have the same cycle type. I

Proof:




Conjugacy in §,



Exams Style Questions

Conjugacy classes of Ss:

{id, {(12),(23), (13)}, {(123), (213)}}

xXmxma

Conjugacy classes of Sy:

{id, {(12), (23), (13), (14)}, {(123), (213), 413} - - - }

id, transpositions, (12)(34) , 3 -cycles, 4 -cylces



Exams Style Questions
Example: In S; the elements (1 2 3) and (1 3 2) are conjugate.
Transpositions are conjugate: {(12),(13),(23)}.

Identity element is a conjugate class.



Exams Style Questions
Example: In Sy, find g such that g = kfk~1

f = (1356)(28)(497) and



Exams Style Questions

What are the conjugacy classes of Qg = {1, —1,i,—i,j, —j, k, —k}.

Solution:
o {1}
@ {-1}
Q {i,—i}
o {j,—j}
Q@ {k,—k}



Exams Style Questions
Question: Write few elements of Conjugacy class of ( 13)(4679) in So

Solution: Here is the list of some elements that belong to conjugacy class of
(13)(4679).

@ (2 4)(5781) transposition (24) and 4 -cycle (5781)
9 (56)(2983)
O (18)(2347)



Exams Style Questions

Question: In this question we work with the group

Uy =1{1,2,4,5,8,10,11,13,16,17,19, 20}.
© Find order of 5.
@ Hence find an element of order 3, and a subgroup H of order 3.
© Find all the right cosets of H in U»;.



Exams Style Questions
Solution:
@ We calculate 52 = 4, 53 =20, 5* = 16, 5° = 17, 5% = 1, so order of 5 = 6.
@ Since 5 has order 6, 52 = 4 has order 3. So H = (4) = {1,4,16} is a subgroup of

order 3.
o
H1 ={1,4,16},
H5 = {5,20,17},
H2 = {2,8,11},

H10 = {10, 19,13}.

(We know we've found all the right cosets because we've written each element of
U1 once.)



Exams Style Questions
Question:
Consider the following permutations:

123456738 123456738
a=(+L 4+ b= bl
2 8436751 71325684

Write down the disjoint cycle notation for a and b, and also for ab, ba, a—t, b~1, (aba)~! and
b~lab. Which of these permutations lie in Ag?

= (128)(34)(567)
17842)
ab = (1567)(348)
ba = (243)(5687)

= (
(
(
(182)(34)(576)
(
(
(15

= (13825)
b~t = (12487)
b~tab = (156)(247)(38).



QMplus Quiz

Attempt Quiz 4 at QMplus page



Some Useful Notations

(Throughout this course, we use the following notation.
@ C, denotes the cyclic group of order n.

o Kilein group often symbolized by the letter V4 or as K4 = Z4 X Z4 denotes the
group {1, a, b, c}, with group operation given by

P =pr=c=1, ab=ba=c, ac=ca=b, bc=cb=a.

@ U, is the set of integers between 0 and n which are prime to n, with the group
operation being multiplication modulo n.




Some Useful Notations

@ Dy, is the group with 2n elements

1, r % .., Y os s, s, .., " ls

The group operation is determined by the relations r” = s> =1 and
sr=r""ls.

@ S, denotes the group of all permutations of {1,..., n}, with the group
operation being composition.

@ GL,(R) is the group of n x n invertible matrices with entries in R, with the
group operation being matrix multiplication.

e Qg is the group {1,—-1,/i,—i,j,—j, k,—k}, in which

P=P2=k>=-1, =k, jk=i, ki=], ji=—k, ki =—i, ik=—j.
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