
WEEK 4 NOTES

1. CONTINUATION OF WAVE EQUATION ON THE REAL LINE

We continue the theory wave equation

(1.1) Utt = c2Uxx, c ≡

√
F

ρ
.

Recall that by the following change of variables

u = x− ct, v = x+ ct.(1.2)

the wave equations becomes
Uuv = 0

and this gives the general solutions

U(x, t) = F (x+ ct) +G(x− ct).

1.1. Where does the change of variables come from? To explain the change of vari-
ables, one observes that the wave equation can be rewritten as

Utt − c2Uxx =

(
∂

∂t
− c

∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
U = 0.

Letting

W ≡
(

∂

∂t
+ c

∂

∂x

)
U,

then (
∂

∂t
− c

∂

∂x

)
W =

∂W

∂t
− c

∂W

∂x
= Wt − cWx = 0.

Thus, W satisfies a first order pde with constant coefficients —we have already studied the
solutions to this equation. The characteristics are lines with negative slope dt/dx = −1/c
(negative slope) so that

x+ ct = constant.

t

x
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Once we know W one has to solve the equation

Ut + cUx = W

which is, again, a first order pde with constant coefficients —observe, however, that the
equation is inhomogeneous. The slope of the characteristics is dt/dx = 1/c (positive
slope) so that

x− ct = constant.

t

x

Note. Thus, the wave equation has two sets of characteristics —that is, there is information
travelling in two directions: to the left and to the right.

2. SOME INVARIANT PROPERTIES OF WAVE EQUATIONS ON THE REAL LINE

From a given solution U(x, t) to the wave equation (1.1) on the real line x ∈ R, we can
construct new solutions to the equation

Proposition 2.1. If U(x, t) is a solution to the wave equation (1.1) on the real line, so are

V (x, t) = U(αx, αt), for any α ∈ R,
W (x, t) = U(x,−t).

Proposition 2.2. Let U1(x, t) solves the the advection equation ( ∂
∂t − c ∂

∂x )U1 = 0 on the
real line,

and U2(x, t) solves the the advection equation ( ∂
∂t + c ∂

∂x )U2 = 0 on the real line.
Then both U1 and U2 solves the wave equation (1.1) on the real line.

We will leave it as an exercise to show these 2 propositions. Problem sets also contains
some similar questions about the invariant properties.

3. CONSERVATION OF ENERGY

Consider the wave equation on the line:

Utt = c2Uxx, x ∈ R
U(x, 0) = f(x), Ut(x, 0) = g(x),

where f(x), g(x) = 0 for |x| > R, with R some big number. This means that f(x) and
g(x) vanish for large |x| —functions of this type are said to have compact support.
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3.1. Derivation. Multiply now the wave equation by Ut on both sides:

UtUtt = c2UxxUt.

Observing that

UtUtt =
1

2

∂

∂t

(
U2
t

)
,

one has then that
1

2

∂

∂t

(
U2
t

)
− c2UxxUt = 0.

Integrating over the real line one then gets that

0 =

∫ −∞

∞

(
1

2

∂

∂t

(
U2
t

)
− c2UxxUt

)
dx

=
d

dt

∫ ∞

−∞

1

2
U2
t dx− c2

∫ ∞

−∞
UxxUtdx

=
d

dt

(∫ ∞

−∞

1

2
U2
t dx

)
−

(
UtUx

∣∣∣∣∞
−∞

− c2
∫ ∞

−∞
UxUxtdx

)

=
d

dt

∫ ∞

−∞

1

2
U2
t dx+ c2

∫ ∞

−∞
UxUxtdx,

where to pass from the second to the third line we have used integration by parts and in the
third line that U(x, t) = 0 if |x| → ∞. Finally, observing that

UxUxt =
1

2

∂

∂t
(U2

x),

one concludes that

0 =
d

dt

∫ ∞

−∞

1

2
U2
t dx+ c2

∫ ∞

−∞

1

2

∂

∂t
(U2

x)dx,

so that
d

dt

(
1

2

∫ ∞

−∞

(
U2
t + c2U2

x

)
dx

)
= 0.

In other words, the quantity in brackets is constant in time. This calculation suggests the
following definition:

Definition 3.1. The energy E[U ](t) of a solution to the wave equation is given by

E[U ](t) ≡ 1

2

∫ ∞

−∞

(
U2
t + c2U2

x

)
dx.

Hence, the previous calculations show that

d

dt
E[U ](t) = 0,

that is, the energy is conserved —i.e. independent of t (law of conservation of total
energy). The term

∫
U2
t /2 is called the kinetic energy and

∫
c2

2 U
2
x the potential energy.
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3.2. An application: uniqueness of solutions. In this subsection we show how the total
energy can be used to show that a solution to the initial value problem

Utt − c2Uxx = 0, x ∈ R
U(x, 0) = f(x), Ut(x, 0) = g(x)

if it exists, then it must be unique.

Suppose one has 2 solutions U1 and U2 an let W ≡ U1 − U2. As the wave equation is
linear one has that

Wtt − c2Wxx = 0,

W (x, 0) = 0, Wt(x, 0) = 0.

The energy of W can be directly computed to be

E[W ](t) = E[W ](0)

=
1

2

∫ ∞

−∞

(
W 2

t (x, 0) + c2W 2
x (x, 0)

)
dx,

= 0.

This means, in particular, that∫ ∞

−∞

(
W 2

t (x, t) + c2W 2
x (x, t)

)
dx = 0,

but W 2
t ≥ 0, W 2

x ≥ 0 so that, in order for the integral to vanish one actually needs

Wt(x, t) = 0, Wx(x, t) = 0.

Thus W (x, t) is constant for all x, t. But W (x, 0) = 0 so that W (x, t) = 0. Hence,
U1 = U2 —that is, the solution is unique.

4. MORE EXAMPLES FOR HYPERBOLIC PDES ON THE REAL LINE

Example 4.1. The Gourset problem has 2 mixed boundary conditions. Let’s consider a
case with wave speed c = 1.

Utt = uxx, x ∈ R
U |x−t=0 = x, U |x+t=0 = x2.

Recall the general solution is given by

U(x, t) = F (x+ t) +G(x− t).

When x− t = 0, we have x = t, so

x = U |x−t=0 = F (x+ x) +G(x− x) = F (2x) + 0.

Thus F (x) = x
2 −G(0).

Moreover, plugging in x = 0 gives F (0) +G(0) = 0.
Similarly, using the x+ t = 0 condition (giving x=-t), we get

x2 = U |x+t=0 = F (0) +G(2x).

Thus G(x) = x2

4 − F (0).
So now the solution is then

U(x, t) =
x+ t

2
−G(0) +

(x− t)2

4
− F (0) =

x+ t

2
+

(x− t)2

4
,
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using that F (0) +G(0) = 0.

Example 4.2. The following equation is hyperbolic.

Uxx − Uxt − 2Utt = 0.

To find the general solutions, we use the argument from 1.2 in Week 4 notes by factoring
the 2nd oder PDE to two 1st order PDEs.

We get the equation

0 = Uxx − Uxt − 2Utt = (
∂

∂x
+

∂

∂t
)(

∂

∂x
− 2

∂

∂t
)U.

This is because

(
∂

∂x
+

∂

∂t
)(

∂

∂x
− 2

∂

∂t
)U

=(
∂

∂x
+

∂

∂t
)(Ux − 2Ut)

=Uxx + Uxt − 2Uxt − 2Utt

=Uxx − Uxt − 2Utt.

Now, we denote by W = ( ∂
∂x − 2 ∂

∂t )U , then the equation becomes 2 first order PDEs

(
∂

∂x
+

∂

∂t
)W = 0

(
∂

∂x
− 2

∂

∂t
)U = W

Solve the first equation for W as a first order linear homogeneous PDE, we get

W (x, t) = f(x− t).

The second equation now is an inhomogeneous first order linear PDE

Ux − 2Ut = f(x− t).

The characteristic lines are

2x+ t = C,

and along the characteristic lines, t = C − 2x.
So the PDE becomes ODE along the characteristsic lines.

d

dx
U(x, t(x)) =

Ux − 2Ut

1
= f(x− t) = f (x− (C − 2x)) = f(3x− C).

Integrate both sides with respect to x, get

U(x, t) =

∫
f(3x− C)dx = F (3x− C) +G(C),

for any F,G.
Plugging in the relation C = 2x+ t from the characteristic equation, we get the general

solution

U(x, t) = F (3x− 2x− t) +G(2x+ t) = F (x− t) +G(2x+ t).

If there is imposed initial conditions (initial position and initial velocity), you can then
use them to determine F and G as we did before.
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5. THE WAVE EQUATION ON THE HALF-LINE: REFLECTION

In this section we analyse with more detail the phenomenon of reflection of waves on a
wall. This problem naturally leads one to consider solutions of the wave equation on the
half-line.The latter is modelled by the problem

Utt − c2Uxx = 0,

with boundary condition
U(0, t) = 0, t > 0

and initial conditions

U(x, 0) = f(x),

Ut(x, 0) = g(x), x ≥ 0.

Boundary conditions like U(0, t) = 0 specifying the value of the solution on some bound-
ary (in this case the t-axis) are known as Dirichlet boundary conditions. In this case it
models a solid wall through which the wave cannot propagate.

To construct solutions to the above problem we will make use of D’Alembert’s formula
for solutions of the wave equation on the whole real line. Notice, however, that the initial
conditions described by the functions f and g are only given on the half-line —i.e. for
x ≥ 0. To get around this problem we consider odd extensions of the functions f and g.
More precisely, we define

F (x) ≡
{

f(x) x ≥ 0
−f(−x) x < 0

and

G(x) ≡
{

g(x) x ≥ 0
−g(−x) x < 0

—see the figure below for a depiction of the idea behind an odd extension of a function.
Now, with the help of the functions F and G we consider the problem on the the whole

real line given by

Vtt − c2Vxx = 0,

V (x, 0) = F (x),

Vt(x, 0) = G(x), x ∈ R.

The solution to the above problem is given then by D’Alembert’s formula as

(5.1) V (x, t) =
1

2
(F (x+ ct) + F (x− ct)) +

1

2c

∫ x+ct

x−ct

G(s)ds.

To see what the relation between the above solution and the problem on the half-line is
evaluate V (x, t) as given above on the t-axis —i.e. at x = 0. One has that

V (0, t) =
1

2
(F (ct) + F (−ct)) +

1

2c

∫ ct

−ct

G(s)ds

= 0,

where it has been used that F (−x) = −F (x) (because of the odd extension) and the fact
that the integral of an odd function on a symmetric interval must vanish.
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Accordingly V (x, t) satisfies the boundary conditions for the problem on the half-line.
Moreover, V (x, t) satisfies the wave equation and the initial conditions for V and U coin-
cide for x ≥ 0. Thus, one has that

U(x, t) = V (x, t), x ≥ 0.

This last result make use of the uniqueness of solutions to the wave equation —a topic not
yet covered in the course!

The claim is that formula (5.1) describes the phenomenon of reflection of waves. To see
this better consider a situation for which g(x) = 0 and f(x) has the form of a bump:

x

The odd extension of the bump has the form

x

As we have seen in the discussion of the interpretation of D’Alembert’s formula, initial
profiles split into two smaller profiles, half the size. In our particular case, each bump will
split into two bumps half the size, one travelling to the right, the other to the left. The
negative bump travelling to the right describes the reflected wave! When thinking about
this problem we only need to concentrate on the solution for x ≥ 0 and ignore the solution
for x < 0.
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x

6. WAVES ON AN INTERVAL

In this section we will study the vibrations of a finite string with fixed ends. This prob-
lem will help to illustrate an important method to solve linear pde’s —the so-called method
of separation of variables. This method applies, more generally, to linear homogeneous
pde’s with homogeneous boundary conditions. The key to this method is the principle of
superposition.

Assume that the string has ends given by x = 0 and x = L. The problem we want to
study can be formulated mathematically as finding solutions to

(6.1) Utt − c2Uxx = 0

with boundary conditions given by

(6.2) U(0, t) = 0, U(L, t) = 0,

and initial conditions given by

U(x, 0) = f(x), Ut(x, 0) = g(x).

6.1. The method of separation of variables. In the method of separation of variables
one looks for solutions to the wave equation (6.1) of the form

(6.3) U(x, t) = X(x)T (t)

where X is a function of x and T of t only. Substitution of (6.3) into the wave equation
(6.1) gives

XT̈ = c2X ′′T

where ˙ denotes differentiation with respect to t and ′ differentiation with respect to x.
Dividing by c2XT one finds that

(6.4)
1

c2
T̈

T
=

X ′′

X
.

The key observation in the method of separation of variables is that the left hand side
of equation (6.4) only depends on t while the right hand side only x. If these to sides are
to be equal it means that they have to be both constant. Let us denote this constant by −λ
—the minus sign is conventional. The constant λ is called the separation constant.
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Thus one has that
1

c2
T̈

T
=

X ′′

X
= −λ.

From the latter one obtains two ordinary differential equations —one for T (t) and one for
X(x). Namely, one has that

T̈ = −c2λT,(6.5a)
X ′′ = −λX.(6.5b)

6.1.1. The eigenvalue problem. We begin by looking at equation (6.5b). The boundary
conditions (6.2) imply that

X(0) = 0, X(L) = 0.

The combination

X ′′ = −λX,(6.6a)
X(0) = 0, X(L) = 0,(6.6b)

is known as the eigenvalue problem. To solve it one needs to find all non-trivial solutions
to (6.6a)-(6.6b). Observe that trivially X(x) = 0 is a solution.

Note. Eigenvalue problems arise in the context of Linear Algebra. In that subject matrices
are linear operators. In Differential Equations the operator is the action of taking two
derivatives of the function X .

An important property of the eigenvalue problem (6.6a)-(6.6b) is that λ > 0. To see
this, rewrite (6.6a) as

X ′′ + λX = 0.

Multiplying by X and integrating one obtains∫ L

0

(
XX ′′ + λX2

)
dx = XX ′

∣∣∣∣L
0

−
∫ L

0

(X ′)2dx+ λ

∫ L

0

X2dx = 0.

Where we have used integration by parts and the boundary conditions (6.6b) to eliminate
the term XX ′|L0 . Hence,

0 <

∫ L

0

(X ′)2dx = λ

∫ L

0

X2dx.

The latter is only possible if λ > 0.

Given that λ > 0, the general solution to equation (6.6a) is given by

X(x) = c1 cos(
√
λx) + c2 sin(

√
λx), c1, c2 constants.

Now, using the boundary conditions one has

X(0) = c1 = 0,

X(L) = c2 sin(
√
λL) = 0.

So, either c2 = 0 which forces X(x) = 0 or
√
λL = nπ with n = 1, 2, 3, . . .. Accord-

ingly, one defines the eigenvalues

λn ≡
(
nπ

L

)2

, n = 1, 2, 3, . . . .
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The corresponding eigenfunction is given by

Xn(x) ≡ sin

(
nπx

L

)
.

6.1.2. The equation for T (t). Now, we use the information from the eigenvalue problem
to solve the equation

T̈ = −c2λT.

As λ > 0 the general solution is given by

T (t) = d1 cos(
√
λct) + d2 sin(

√
λct).

6.1.3. The general solution. Combining the expressions obtained in the previous para-
graphs, for a given n the solution consists of products

Un(x, t) = an sin

(
nπx

L

)
cos

(
nπct

L

)
+ bn sin

(
nπx

L

)
sin

(
nπct

L

)
with constants an, bn. Now, recalling that the wave equation is linear, one has that the
principle of superposition applies: the sum of two solutions is also a solution. Taking this
to the extreme one has that

U(x, t) =

∞∑
n=1

Un(x, t)(6.7)

=

∞∑
n=1

[
an sin

(
nπx

L

)
cos

(
nπct

L

)
+ bn sin

(
nπx

L

)
sin

(
nπct

L

)]
Next, to determine the coefficients an, bn, we will need to make use of the initial con-

ditions U(x, 0) = f(x) and Ut(x, 0) = g(x).


