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Examples of Groups Y, 787

Symmetries of Geometric objects L,ioéaétm aﬁa«j 2%
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Examples of Groups ﬂ 4 2 l Z ——‘P Z -"D

Example: The group of symmetries $of a hexagon is known as the dlhedral group,
denoted as D15 consists of the symmetries that can map the hexagon onto itself.
These symmetries include:

Rotational Symmetries: Rotation by 0°,60°,120°,180°,240°,300°.

Reflective symmetries: There are 6 axes of symmetry for a regular hexagon, 3 axes
passing through opposite vertices, 3 axes passing through midpiunts of opposite sides.
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Examples of Groups

The symmetry group of a subset P C R" depends on the geometric properties of P. It
consists of all isometries that map P onto itself, preserving the distances between
points in P. For finite sets, this often corresponds to a finite group of discrete
symmetries (such as rotations and reflections), while for infinite or more structured sets
like circles or spheres, the symmetry group can be continuous and infinite.

For any subset P C R", the symmetry group Sym(P) is a subgroup of the isometry
group of R", which consists of all distance-preserving transformations in R”.

Translations, Rotations, Reflections, Rotoreflections
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Examples of Groups
Examples of Symmetry Groups for Specific Subsets P:
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Examples of Groups X= {/\ 253, .. '7}
Symmetric group: Group of all permutations on n symbols
——— ose X— afe Af‘*‘ﬁ

578/ €.
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Examples of Groups m()( )

Symmetric group: Group of all permutations on n symbols
X-set , Sym(X)= {the collection of one-to-one and onto function f : X — X}

AN
The symmetric group of degree n is the symmetric group on the set

X =1{1,2,3,---,n} will be denoted by S,. f:ZI, 2> S)Q,S} — {//)2)5)‘/95}

7[ )2 3 45
CaimZ = (o1 ¢ 43 f(12345)=(21543)
Claim: Sym(X) equipped with o is a group.
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Verification of group axioms
Symmetric group: Group of all permutations on n symbols

Disjoint cylce notation: Wﬁ}&/ﬁ p ons en d&\/amé

The group operation in a symmetric group is function composition, denoted by the symbol o or
simply by just a composition of the permutations. X

2 3 45 %
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We Il apply first g and then f.
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Verification of group axioms

Symmetric group: Group of all permutations on n symbols
Remarks:

© Symmetric groups on infinite sets behave quite differently from symmetric groups
on finite sets.

@ The symmetric group on a set of n elements has order n!.
© It is abelian if and only if n is less than or equal to 2.
o

For n =0 and n =1 (the empty set and the singleton set), the symmetric groups
are trivial (they have order 0! and 1!.

The symmetric group on a set of size n is the Galois group of the general polynomial of
degree n and plays an important role in Galois theory.



Symmetric group @s( ” ;:) :///(/zr ,l) =7 (’2}

S,, symmetric group of degree 2

This group consists of exactly two elements: the identity and the permutation
swapping the two points. It is a cyclic group and is thus abelian.

S3, symmetric group of degree 3, S3 = Dy

S3 is the first non-abelian symmetric group. This group is isomorphic to the dihedral
group of order 6, (Dg) the group of reflection and rotation symmetries of an equilateral
triangle, since these symmetries permute the three vertices of the triangle. Cycles of
length two correspond to reflections, and cycles of length three are rotations.
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Symmetric group
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Cyclic group

The cycic group of order n.

Cn=1{1,2s,22,--- , 20"} where z, is an element of order n.
Bxample: 2, = &', &=( 7, L& ymit eomele
Another visualisation is 011+ fzz _ [37 [I}—rﬂ/? =0
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Cyclic group Z/nZ:Z%/:?»-" !
Cyclic Groups: The infinite cyclic group teor

Gdo'/f andlet

Co ={1,2,22,2%, 271 272 273 ...} - 7
\I/Evhere zI is. an element of infinite order. Z/”K 3 (naﬁ ﬁwf ‘
.xamp e P Zglflggcﬁ,fr on
(i) Z={0,+1,-1,42,-2,+3,-3,--- } am&/f— Lo A.
(ii) G-group, g € '9" (g) is a cyclic group.
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Integer modulo n Group &Uw«fd’ Qf Wéd:

Consider the multiplicative subgroup Integers module n,
5.7;35,,«,402) Uy =(Z/nZ)* ={1,2,--- ,;n—1} = -
=/ S /=7

{numbers from 1 to n — 1, which are co-prime to n}.
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Integer modulo n Group 7[4 , Q oned (1)
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The Qﬁaternion group é?g ’479&3

The quaternion group Qg (sometimes just denoted by Q) is a non-abelian group of
order eight, isomorphic to the eight-element subset {1,1,j, k, —1,—i, —j, —k} of the
quaternions under multiplication.

Quaternion group multiplication table (simplified form) ¢ J= A
Jiz R

® -1 i —j -k 1 i j &k i2:j2:k2:—1,

o) 1 AR I —li=—i,—1j=—j, —1.k=—k

S A T E ij=kgok=i ki=j

gkl kA ji= —kokj=—iik=—]

11 - —j —kE{ ik 2
=
i =i -k j i -1 k —j -
j -j k - j -k -1 i
k -k -j i\1/[fk j -i -1 - -
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The Quaternion group _i= (—a O}

0 —;
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@ O3 is non-abelian.
@ lts subgroups are {1}, {-1,1}, {-1,1,-i,i}, {-1,1,-},j}, {-1,1,-k,k}, and
{-1,1,-1,i,j-k, K}
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Matrix group: General linear group, GL,(R) or GL(n, R).

Definition
In mathematics, the general linear group of degree n is the set of nxn invertible matrices,

together with the operation 6f ordinary matrix multiplication. This forms a group, because the

product of two invertible matrices is again invertible, and the inverse of an invertible matrix is
invertible, with the identity matrix as the identity element of the group.

Remark: A matrix is invertible iff its determinant is not 0.

v v v
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Matrix group: General linear group, GL,(R) or GL(n, R).

Real numbers case: The general linear group GL(n, R) over the field of real numbers is a
real Lie group of dimension n?. To see this, note that the set of all n x n real matrices, M, (R),
forms a real vector space of dimension n?. The subset GL(n, R) consists of those matrices
whose determinant is non-zero.

Complex numbers case: The general linear group over the field of complex numbers, GL(n,
C), is a complex group of complex dimension n?. As a real Lie group (through realification) it
has dimension 2n?. The set of all real matrices forms a real Lie subgroup. These correspond to

the inclusions /\/0'7’ éﬂpdﬂaéﬂ

GL(n,R) < GL(n,C) < GL(2n,R) ﬁ

2

)

or

which have real dimensions n? 2n?, and 4n? = (2n)



Matrix group: General linear group, GL,(R) or GL(n, R).

Finite field case: Let F be a field, then the general linear group GL,(F) consists of all the
invertible n X n matrices over IF, the operation key matrix multiplication.

Exercise: F, = {0,1}.
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Matrix group: General linear group, GL,(R) or GL(n, R).
Definition: The speciall linear group SL,(P) consists of n x n matrices with
determinant 1. , 7
————

Definition: The speciall linear group SL»(R) is the group of 2 x 2 geal matrlces with

determinant 1. d@f[ﬂ)7' OM (ﬂ_ ) = M[A)
B sy {(2 8 ) ancsen w1} )

—

|SLy(R)| is infinite. —~—~—
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Upper traingular matrix 9@@{7—’— I= (0 (); dot T)

Subgroups of SL(R): Iégln /p)
Cyclic Subgroups: Cyclic groups generated by one element of SL>(R). If A € SLg(R),
then (A) = {A"|n € Z} forms a cyclic subgroups. A " /’n /4 ’"f

Diagonal Subgroups: The diagonal matrices with determinant 1 form a subgroup of

SLy(R). This subgroup i |s isomorphic_to R* the multiplicative group of non zero real
numbers: < /L

AD =t ; —{(S AP =1
(32) = (E) ()
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Upper traingular matrix (( o)f;“ 7e (I o)

Upper Triangular Subgroup (Borel Subgroup):
The set of upper triangular matrices with determinant 1 forms an important subgroup,

called the Borel subgroup: _ [/ b2
A= (4,_,/) g p8{<a/@):aeR*,beR‘}/ s (01/5%/)

Q

Rotatlon. Subgroup (SO(2)) o ) o
The special group
SO(2) is a subgroup of SLy(R), consisting of all rotations in R?: )

_ cos) —sinf _ /\/
50(2)_{<Sin9 . ).GER} B

{
i 5 L -5 A=
MA) oa) (% a Ad<L



Upper traingular matrix

v" Exercise: Consider the Upper triangular matrix with 1 on the diagonals. Check
if this is subgroup of SLp(R).

LL =5(1 %) ver

w,- _$in® coslp) —Sng
po] Be—== E= /

Find (258 nlf) e
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Upper traingular matrix =

Definition: The upper triangular matrix has all the elements below the main diagonal as zero.
Also, the matrix which has elements above the main diagonal as zero is called a lower
triangular matrix, also, written in the form of; —(

@"@)

aun, A o A A

0 amw” - & 1 32: M(PO))—S’M/’O)
T?{/ 0 v=lo 0 o oa am “\gm(-9y, 659

0 U 0 art1r1 i
£03(0), 'Smfo)) - S _ (w&& Zind

0 0O --- 0 0 mn _an
Sia(o), €s3(°) 2 e s$nd ¢34

w/@_r,cp), ,gc‘ﬂ/&f@) Cg@{Z) /4 ﬂ
Len (0+0) 66’5[691‘@) :R&HF ;I




Upper traingular matrix

Properties of Upper Triangular Matrix

o

2]
o
o
o

If we add two upper triangular matrices, it will result in an upper triangular matrix
itself.

If we multiply two upper triangular, it will result in an upper triangular matrix
itself.

The inverse of the upper triangular matrix remains upper triangular.

The transpose of the upper triangular matrix is a lower triangular matrix, U7 = L.
If we multiply any scalar quantity to an upper triangular matrix, then the matrix
still remains as upper triangular.



Exams Style Questions
Exam Year, 2024

Question 1

(a) For the following, either give an example or explain why no example can exist:
(i) A group with at least four elements in which every element has order either 1 or 2.
(i) A group with at least four elements in which every element has order either 1 or 4.
(iii) Two groups of order 24 which are not isomorphic to one another.
(iv) Two countably infinite groups which are not isomorphic to each other.

(b) Let G = {x € R: x > 0} and define a binary operation o on G by
x oy := |x — y|. Decide which of the four group axioms are satisfied by (G, o)
and which are not. For each axiom, give a brief justification for your answer.

Vi, Lu ((772‘ 3?’? ot 2
() plot Pozxét‘bﬁ?» 13753/’3)5)3}
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Exams Style Questions

(c) Using Lagrange's theorem, or otherwise, show that if g is an element of a group
G such that |G| = n, then g" is the identity element of G.

(d) Using the result of (c) above, show that if p is a prime number and n is an integer
in the range 1 < n < p, then n”P~1 =1 mod p. (Hint: consider the group Uy.)

(e) List all subgroups of the dihedral group Dig and indicate briefly why your list is

complete.
Gy : Aox =
/,,,q/,o

cach
Gz oo =/A-0l == /eéz%’{
pvetle.

A 7o) §70d 7° O u Js ioteilf-
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Exams Style Questions -

Question 2: Classify all groups of order 4 up to isomorphism.

Sol:Let G be a group with order |G| = 4. Then, we know by Lagrange's theorem that
non-identity elements of G can have orders 2 or 4.

@ If G contains an element of order 4, then G is cyclic and therefore isomorphic to
Zg.

@ If G does not contain an element of order 4, the only other possibility is that all 3
non-identity elements have order 2. If we let G = {e, by, by, b3}, we consider the
value of bi1by. If bybo = e, then by = by, a contradiction. If byb, = by or
bi1b, = by, then we conclude one of b; and b, is the identity, again a
contradiction. So, we must have byjby = b3. Then, we define a mapping
(Vo G — ZQ X Z2Z



v:e—(0,0)
¢:b14)(071)
¢ by —(1,0)

<p:b3_>(171)

giving us an isomorphism from G to Zy X Zs .

Therefore, every group G of order 4 is isomorphic to either Z4 or Zy x Zs.

Question 3: Classify all groups of order 8 up to isomorphism. /\/pn—-éiﬂm}'t_aé&

QAuestron.



Exams Style Questions
Exam Year, 2022

Question: Give examples of
(a) A group of order 24 which is not abelian.

(b)
(c) A pair of abelian groups of the same order which are not isomorphic to one another.
d)

(d) A group G and a two subgroups Hi, H» < G such that H; U H, is npt a subgroup
of G.

A group of infinite order which is not abelian.



Exams Style Questions
Exam Year, 2021

Question 1 [16 marks].

(a) Suppose G is a set with three elements a, b, ¢, with a binary operation given by the
following table.

Which of the group axioms G1-G4 does G satisfy? Justify your answer. [5]
(b) Now let
a b 2 2 c d 2
H= abeR A+ #03 U GdeER, F+d*#0;.
—b a d —c
Prove that H is a subgroup of GL,(R). [6]

Now suppose G is a group. Recall that if ¢ € G, the order of g is the smallest positive integer
n such that ¢" = 1, or oo if no such n exists.

(c) Suppose f,g € G satisfy gf = f'gand ord(g) = 4. What is ord(fg)? Justify your

answer. [5]



Exams Style Questions
Exams Question 2022 v’

Recall that GL,(R) denotes the group of invertible n x n matrices with real entries.
Let O(n) denote the set

O(n)={AcGL,(R): ATA=1}
where | denotes the n x n identity matrix and AT denotes the transpose of the matrix
A. Show that O(n) is a subgroup of GL,(R).

\



Exams Style Questions
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QMplus Quiz 2 ’il;[} v [omerbel
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Some Useful Notations

(Throughout this course, we use the following notation.
@ C, denotes the cyclic group of order n. \/

o Kilein group often symbolized by the letter V4 or as K4 = Z4 X Z4 denotes the
group {1, a, b, c}, with group operation given by

P =pr=c=1, ab=ba=c, ac=ca=b, bc=cb=a.

@ U, is the set of integers between 0 and n which are prime to n, with the group
operation being multiplication modulo n.




Some Useful Notations

Pal
@ Dy, is the group with 2n elements v
1, r % .., Y os s, s, .., " ls

The group operation is determined by the relations r” = s> =1 and
sr=r""ls.

@ S, denotes the group of all permutantiys of {1,...,n}, with the group
N~~~ . . .
operation being composition.

@ GL,(R) is the group of n x n invertible mat%c;s/with entries in R, with the
group operation being matrix multiplication.

° Qg’\is/t}ue group {1,—1,i,—i,j,—j, k,—k}, in which

2 =j%=kK>=—1, =k, jk=1i, ki=j, ji=—k, ki=—i, ik=—].
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