MTH6106 Group Theory — Coursework 4

December 6, 2023

This coursework counts for 4% of your mark for this module. You should
answer all questions, and each question will be marked out of 4. You should
give full explanation of your answers. Please submit your solutions on QMPlus
by 2pm on Friday 2nd December. Your submission must be entirely your own
work.

1. Prove, by obtaining a contradiction, that there cannot exist a homomor-
phism ¢: Qs — S5 such that ¢(j) = (1234) and ¢ (k) = (5314).

If such a homomorphism exists then we would have ¢ (jk) = (1234)(5314) =
(23)(45) and ¥(kj) = (5314)(1234) = (12)(35). There are several ways of
deriving a contradiction from this. Firstly, in Qg we have jkkj = i(—i) =
—i2 = 1 so0 ¥(jkkj) must be the identity, which is not the case here since
(23)(45)(12)(35) = (13452) # id. Secondly, if ¥(jk) = (1234)(5314) =
(23)(45) then in particular (i) = 1 (jk) has order 2, so ¢(i?) must be the
identity, in which case we should have ¥ (jk) = ¥(—1)¢(jk) = v(—jk) =
1 (kj) which is false. This list of routes to a contradiction is not exhaustive.

2. Write down a homomorphism ¢: C3 X C3 — C2 X Co such that im ¢ = ker ¢.
Can there exist a homomorphism ¢: Dg — Dg with the same property?
Why, or why not?

There are several ways of doing this. One is to define ¢(g, h) := @(gh, gh)
for all (g,h) € C3 x Co. To see that it is a homomorphism note that

©(9192, h1ha) = (g192h1h2, g1g2h1h2) = (91h192h2, g1h1g2ha) = ©(g1, k1)@ (g2, ha)

for every (g1, h1), (g2, h2) € Ca X C3. Both the kernel and the image are
{(g,9): g € C2}. Some alternatives which also work are ¢(g,h) := (h, 1)
and (g, h) := (1, 9).

Any homomorphism ¢: G — G must satisfy |G|/|kery| = |im¢p| by
the First Isomorphism Theorem, so if |ker ¢| = |im | then necessarily
|ker o| = \/|G|. If |G| = 8 this is impossible since |ker ¢| would have to
be non-integer.



3. Find all the automorphisms of C1y and write down a Cayley table for
Aut(ClO).

Write C19 = {1,2,22,...,2°} < C* where 210 = 1. If ¢: C19 — Oy
is a homomorphism then it is completely determined by ¢(z), since then
#(2%) = ¢(2)F for all k = 0,...,9. On the other hand, if 0 < m < 10 then
defining ¢,,(2%) := 2™F for every k = 0,...,9 defines a homomorphism
Om : Cro — Cho. It follows that there are exactly 10 homomorphisms from
C1p to itself.

Now, a homomorphism from a group to itself is an automorphism if and
only if it is bijective. Since ¢,, is a function from a finite set to itself, it is
bijective if and only if it is injective. The homomorphism ¢,, is injective
if and only if the only solution to ¢,,(2*) = 1 is k = 0, if and only if the
equation km = 0 mod 10 has no solutions except £k = 0 mod 10, if and
only if m has no common factors with 10. So ¢,, is an automorphism if
and only if m has no common factors with 10. There are therefore four
elements in Aut(Clo)Z ¢1, ¢3, ¢7, ng.

The Cayley table is
| ¢1 ¢s b7 o
b1 | b1 3 Pr g
O3 | P93 9 1 P71 -
Or | P71 P11 bo @3
b9 | P9 97 b3 1

4. Lemma 5.6 tells us that the order of every conjugacy class divides the
order of the group, which in this case is 14. So every conjugacy class has
size 1, 2, 7 or 14. Tt is easily checked from the definition (or by Lemma
3.8) that 1 is in its own conjugacy class, {1}, so all other conjugacy classes
must have size 1, 2, or 7.

Now we can check that rsr=! = rrs = r2s, r(r?s)r=1 = rts, r(rits)r=! =
r%s, and so on, and it follows easily that the conjugacy class of s includes
{r¥s: 0 < k < 7}. Therefore the order of the conjugacy class of s is at
least 7, but by the previous reasoning this implies that it is ezactly seven.

So {s,rs,r%s,...,r%s} is a conjugacy class.

This leaves only the six nontrivial rotations to account for, and by elim-
ination their conjugacy classes must have size either 1 or 2. It is easy
to check that srs™! = srs = ssr~! = =1 = 1% so r and 7% are con-
jugate, hence one of the classes is {r,r%}. Similarly sr?s~! = r® and
sr3s71 = rt. The classes therefore must be {1}, {r,r%}, {r?,r°}, {r3,r1}

and {s,rs,r?s,...,r%s}.

5. Consider a nonzero vector (u,v)” € F2. If u # 0 then the matrix

(¢ %)



belongs to SLa(F,) and satisfies

(b2 6) =)

If v # 0 then similarly

belongs to SLa(F,) and satisfies

u —v Y\ (1\  [(u
v 0 0) \v)~
In either case (u,v)” belongs to the orbit as required. The orbit therefore

contains p? — 1 vectors. On the other hand the stabiliser consists of all
matrices of the form

1 ¢

0 d

with determinant 1, which is to say, all matrices of the form

b 1)

and there are p such matrices. By the orbit-stabiliser theorem it follows
that | SL2(Fp)| = p(p* — 1).

. All eight faces of this solid are the same identical isoceles triangle, so by
rotation we can see that the orbit of any one face is just the set of all pos-
sible faces. The orbit of a face therefore has eight elements. The stabiliser
of a face contains the identity, and also contains a single reflection in the
plane which bisects the face. Therefore |G| = 16.

You can verify this calculation by instead considering the action on ver-
tices. This is made more complicated by the fact that there are two
“types” of vertex: the two “top and bottom” vertices which each meet
four “long” edges, and the “middle” vertices which each meet two “long”
edges and two “short” edges. The orbit of the first type of vertex has two
elements, and the stabiliser consists of all symmetries of the square base,
so we get 2 x 8 = 16. The orbits and stabilisers of “middle” vertices have
four and four elements respectively.



