
MTH6106 Group Theory – Coursework 3

November 16, 2023

This coursework counts for 4% of your mark for this module. You should
answer all questions, and each question will be marked out of 4. You should
give full explanation of your answers. Please submit your solutions on QMPlus
by 2pm on Friday 10th November. Your submission must be entirely your own
work.

1. Write down the Cayley table for the quotient group D12/⟨r2⟩. (You do
not need to prove that ⟨r2⟩ is normal.)

For brevity write N := ⟨r2⟩ and note that N = ⟨r2⟩ = {1, r2, r4}. The
right cosets of N are

N = {1, r2, r4}, N · r = {r, r3, r5}

N · s = {s, r2s, r4s}, N · rs = {rs, r3s, r5s}

and the Cayley table is therefore

N N · r N · s N · rs
N N N · r N · s N · rs

N · r N · r N N · rs N · s
N · s N · s N · rs N N · r
N · rs N · rs N · s N · r N

2. Let d ≥ 1, let F be a field and let Affd(F) denote the set of all functions
TA,v : Fd → Fd which have the form TA,v(x) = Ax + v, where A is an
invertible d × d matrix with entries in F and where v ∈ Fd. Prove that
Affd(F) is a group (where the binary operation is given by composition of
functions).

This can be simplified by noticing that Affd(F) is a subset of Sym(Fd) and
is equipped with the same composition operation, so in particular G2 is
satisfied automatically and we only need to check that Affd(F) is closed
under composition, contains the identity element of Sym(Fd), and contains
all inverses. For the first of these three points notice that (TA,v◦TB,w)(x) =
TA,v(TB,w(x)) = TA,v(Bx + w) = ABx + Aw + v = TAB,Aw+v(x) for all
x ∈ Fd and therefore TA,v ◦ TB,w = TAB,Aw+v ∈ Affd(F) as required to
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prove closure. To see that the identity function belongs to Affd(F) we
note that the element TI,0 ∈ Affd(F) satisfies TI,0(x) = x for all x ∈ Fd

so that TI,0 is the identity function. Finally we may check that (TA,v ◦
TA−1,−A−1v)(x) = A(A−1x − A−1v) + v = x = TI,0(x) for all x ∈ Fd so
that TA,v ◦ TA−1,−A−1v = TI,0 and likewise TA−1,−A−1v ◦ TA,v = TI,0. The
inverse function of TA,v is therefore TA−1,−A−1v which is an element of
Affd(F) as needed.

3. Let d ≥ 1 and let F be a field, and define a group of matricesG ≤ GLd+1(F)
by

G =

{(
A v
0 1

)
: A ∈ GLd(F), v ∈ Fd

}
.

Prove that G is isomorphic to the group

Affd(F) = {TA,v : A ∈ GLd(F), v ∈ Fd}

considered in the previous question. (You do not need to prove that G is
a group.)

We just need to construct an isomorphism between the two groups: define
φ : G → Affd(F) by

φ

((
A v
0 1

))
:= TA,v

which is clearly surjective by the definition of G. It is also injective: if
TA,v = TB,w then TA,v(x) = TB,w(x) for all x ∈ Fd, so Ax+ v = Bx+ w
for all x ∈ Fd, so v = w (by taking x = 0), so Ax + v = Bx + v for all
x ∈ Fd, so Ax = Bx for all x ∈ Fd and therefore A = B. Thus

φ

((
A v
0 1

))
= φ

((
B w
0 1

))
=⇒ A = B and v = w.

To see that it is a homomorphism we note that for every pair of elements
of G,

φ

((
A v
0 1

)(
B w
0 1

))
= φ

((
AB Aw + v
0 1

))
= TAB,Aw+v

= TA,v ◦ TB,w

= φ

((
A v
0 1

))
◦ φ

((
B w
0 1

))
where the equation TAB,Aw+v = TA,v ◦TB,w comes from the answer to the
question before.

4. For every integer r ≥ 1 let Cr denote the cyclic group

{e2πik/r : 0 ≤ k < r} ≤ C×.
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Let n, n ≥ 1 be a pair of integers whose highest common factor is 1. Define
a function φ : Cn × Cm → Cnm by

φ(e2πik/n, e2πiℓ/m) := e2πik/n · e2πiℓ/m.

Prove that φ is an isomorphism.

To see that φ is a homomorphism, let (e2πik/n, e2πiℓ/m), (e2πir/n, e2πis/m) ∈
Cn × Cm and note that

φ((e2πik/n, e2πiℓ/m) · (e2πir/n, e2πis/m)) = φ((e2πi(k+r)/n, e2πi(ℓ+s)/m))

= e2πi(
k+r
n + ℓ+s

m )

= e2πi(
k
n+ ℓ

m ) · e2πi(
r
n+ s

m )

= φ((e2πik/n, e2πiℓ/m))φ((e2πir/n, e2πis/m))

as required. To demonstrate injectivity it is enough to show that the
kernel of φ is trivial. If φ((e2πik/n, e2πiℓ/m)) = 1 then e2πi(k/n+ℓ/m) = 1
so k/n + ℓ/m must be an integer, call it p. We have k/n + ℓ/m = p, so
km+nℓ = nmp, so n|km and m|nℓ by simple rearrangement. Since n and
m are coprime it follows that n|k and m|ℓ; but necessarily 0 ≤ k < n and
0 ≤ ℓ < m, so k = n = 0 and the only element of the kernel is (1, 1). This
proves injectivity.

To prove surjectivity we would need to show that every e2πit/nm ∈ Cnm is
in the image of φ. This means that given any t in the range 0 ≤ t < nm we
must find integers k, ℓ such that e2πi(k/n+ℓ/m) = e2πit/nm. This equation
holds if and only if k/n + ℓ/m − t/nm is an integer, which holds if and
only if km+ ℓn = t mod mn. Since n is coprime to m there exist integers
a, b such that am + bn = 1, so atm + btn = t and we can take k = at
mod n and ℓ = bt mod m.

However: since both |Cn×Cm| and |Cnm| equal nm, a function from the one
set to the other is bijective if and only if it is either injective or surjective.
It is therefore not necessary to prove both injectivity and surjectivity in
the detail given above, but instead you can prove only one and deduce
bijectivity from |Cn × Cm| = |Cnm|.

5. Let F be a field, and consider the group

G :=


1 a b
0 1 c
0 0 1

 : a, b, c ∈ F

 ≤ GL3(F).

Find the centre Z(G) of the group G. (You do not need to prove that G
is a group.)

By definition the matrix 1 a b
0 1 c
0 0 1


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belongs to the centre if and only if1 a b
0 1 c
0 0 1

1 d e
0 1 f
0 0 1

 =

1 d e
0 1 f
0 0 1

1 a b
0 1 c
0 0 1


for all d, e, f ∈ F, if and only if1 a+ d b+ af + e

0 1 c+ f
0 0 1

 =

1 a+ d b+ cd+ e
0 1 c+ f
0 0 1

 ,

if and only if af = cd for all d, f ∈ F, if and only if a = c = 0. So

Z(G) =


1 0 b
0 1 0
0 0 1

 : b ∈ F

 .

6. Let G and H be groups, and let N be a normal subgroup of G. Decide
whether each of the following two statements is true or false. Give a proof
or a counterexample in each case.

(a) The group G×H is abelian if and only if G and H are both abelian.

(b) The group G/N is abelian if and only if both G and N are abelian.

The first statement is true. Note that G × H is abelian iff for every
(g1, h1), (g2, h2) ∈ G×H we have

(g1, h1) · (g2, h2) = (g2, h1) · (g1, h1),

iff for every (g1, h1), (g2, h2) ∈ G×H we have

(g1g2, h1h2) = (g2g1, h2h1),

if and only if for every g1, g2 ∈ G and every h1, h2 ∈ H,

g1g2 = g2g1 and h1h2 = h2h1,

and this last is precisely what it means to say that both G and H are
abelian.

The second statement is false. It is possible to show that if G is abelian
thenG/N is abelian, but the converse does not hold, making the statement
false. Some examples where G/N is abelian and G is not include:

• G = S3 and N = ⟨(123)⟩;
• G = Q8 and N = {1,−1};
• G = D2n and N = {1, r, r2, . . . , rn−1}, where n ≥ 3;

• G any non-abelian group and N = G′ the derived subgroup;

• G any non-abelian group and N = G.
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