
MTH6016 Group Theory – Solutions 2

November 21, 2023

1. If a is odd then you should get {1, r2, rs, r3s} and if a is even then you
should get {1, r2, s, r2s}.
By Lagrange’s theorem the order of a subgroup of D8 must be 1, 2, 4
or 8. Now, repeated (inductive) application of the relation rs = sr−1

implies rks = sr−k for every k ∈ Z. This means that (sra)2 = (r−as)2 =
r−asr−as = r−arass = 1 irrespective of the value of a, and (sra+2)2 = 1
by similar reasoning. On the other hand srasra+2 = ssr2 = r2 and
sra+2sra = r−2 = r2. So the subgroup contains at least 1, r2, ras = sra+2

and ra+2s = sra, i.e. the subgroup contains {1, r2, ras, ra+2s. So the order
of ⟨sra, sra+2⟩ is either 4 or 8. It is not hard to see that we cannot create
all elements of D8 from sra and sra+2, in particular we cannot generate
r, so the order of the generated subgroup cannot be 8 and therefore it is
4. So the answer is {1, r2, ras, ra+2s}.

2. Recall that F3 is the set {0, 1, 2} equipped with multiplication modulo 3,
with respect to which F3 is a field. Let G be the group of 2 × 2 upper-
triangular invertible matrices with entries in F3.

We have

H =

{(
1 0
0 1

)
,

(
1 1
0 1

)
,

(
1 2
0 1

)}
which gives (

2 0
0 2

)
·H =

{(
2 0
0 2

)
,

(
2 2
0 2

)
,

(
2 1
0 2

)}
(
2 0
0 1

)
·H =

{(
2 0
0 1

)
,

(
2 2
0 1

)
,

(
2 1
0 1

)}
(
1 0
0 2

)
·H =

{(
1 0
0 2

)
,

(
1 1
0 2

)
,

(
1 2
0 2

)}
and for this example every right coset is equal to the corresponding left
coset. (This fact is not obvious.) Computations can be simplified using
the fact that once the first two cosets are known, the third coset necessarily
consists precisely of the matrices which were not in the first two cosets.
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3. The easiest way to approach this question is to decide whether the equation(
a b
c d

)(
1 2
0 1

)
=

(
1 −1
0 1

)(
a b
c d

)
can be solved with the matrix

(
a b
c d

)
belonging to the relevant group. This

equation rewrites as(
a 2a+ b
c 2c+ d

)
=

(
a− c b− d
c d

)
.

Clearly a = a− c implies that c must be zero, so we need to solve(
a 2a+ b
0 d

)
=

(
a b− d
0 d

)
.

Thus we need to choose the coefficients a, b, d such that 2a = −d and such
that the matrix belongs to the relevant group.

(i) G = GL2(R): yes, the two matrices are conjugate (take e.g. a =
−1/2, d = 1, b = c = 0 to solve the required equation with a real
invertible matrix.)

(ii) G = SL2(R): no, the matrices are not conjugate; we would need
2a = −d but also ad = 1 in order for the determinant of the matrix
to be 1, and this implies 2a2 = −ad = −1 so that a2 = −1/2 which
is insoluble for real a.

(iii) G = SL2(C): yes, the matrices are conjugate; we need 2a = −d
and ad = 1, but we are now allowed complex entries, so this can be
solved with a = −i/

√
2, d = i

√
2, b = c = 0.

(iv) G = GL2(F3): yes, but this is a trick question since in this field the
two matrices are identical.

4. Let G be a group of order 14 and H a subgroup of G. By Lagrange’s
theorem the order ofH divides the order of G, so the order ofH must be 1,
2, 7 or 14. Furthermore, if h is any element ofH, then since ord(h) = |⟨h⟩|,
the order of h must divide |H|.
If H has order 1 then it is the trivial group {1} and we are done. If H has
order 2 then it contains a non-identity element g, say, whose order must
divide |H|. Since |H| = 2 and g ̸= 1, the order of g must by elimination by
equal to 2 and we are done in this case. If H has order 7 then it contains
six non-identity elements, each of which cannot have order 1 but must
have order equal to a factor of 7. All of these elements therefore have
order 7 and we are done in this case. Finally, if H has order 14 then all of
its non-identity elements have order 2, 7 or 14. If an element g has order
14, then it follows easily from the definition of order that g2 has order 7
and g7 has order 2. So in all cases where H is not the trivial subgroup, H
contains an element of order 2 or 7 or both.
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Now suppose that H has an element of order 2 and and element of order
7. Since the order of every element of H must divide the order of H, the
order of H must be divisible by both 2 and 7, and by Lagrange’s theorem
it also must divide |G|, which is 14. This is only possible when |H| = 14.

5. Write f = hgh−1 with h ∈ G. For every k ≥ 1 we have fk = (hgh−1)k =
hgkh−1. If fk = 1 then hgkh−1 = 1 so gk = 1. Equally, if gk = 1 then
fk = h1h−1 = 1. So fk = 1 if and only if gk = 1. In particular, f has
infinite order if and only if g has infinite order; and in the finite-order case,
the smallest integer k ≥ 1 such that fk = 1 is also the smallest integer
k ≥ 1such that gk = 1. This completes the proof.

6. (i). If X = {x1, x2, . . . , xn} then P(X) = ⟨{x1}, {x2}, . . . , {xn}⟩. To
actually prove this, it would be enough to show that these elements gener-
ate at least 2n different elements of P(X), and this is most easily proved
by induction on the cardinality of the set X. This result can be ver-
ified to be true directly when n is small, e.g. 3 or 4. In general, if
A = {xi1 , . . . , xik} ⊆ X then A = {xi1}△ · · ·△{xik}. However, the ques-
tion only asks you to write down a generating set, not to prove that this
set generates the group.

(ii). Observe that A△B = B△A and A△A = ∅ = idP(X) for all A,B ∈
P(X), so the group is abelian and all of its elements have order 2 (except
for the identity which has order 1). In particular if g1, . . . , gk ∈ P(X) then
⟨g1, g2, . . . , gk⟩ = {gn1

1 gn2
2 · · · gnk

k : ni ∈ {0, 1}} and this set has at most 2k

elements. So the subgroup generated by any n − 1 elements will contain
not more than 2n−1 < 2n = |P(X)| elements and therefore cannot equal
P(X).
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