
MTH6016 Group Theory – Coursework 1

solutions

October 25, 2023

1. Suppose that G is a group. Let f, g ∈ G and suppose that ord(f) = 3 and
ord(g) = 6.

(i) Since ord(f) = 3 we have f2 ̸= 1. (If we had f2 = 1 then ord(f)
would have to be 1 or 2.) We also have (f2)2 = f4 = f · f3 = f ̸= 1
since f has order 3 and does not have order 1. On the other hand
(f2)3 = f6 = f3 · f3 = 1 · 1 = 1, so the smallest integer k ≥ 1 such
that (f2)k = 1 is k = 3. Thus ord(f2) = 3.

(ii) Since ord(g) = 6 we have g3 ̸= 1, so ord(g3) ̸= 1. On the other hand
(g3)2 = g6 = 1 so ord(g) must be 2.

(iii) We have (fg)6 = fgfgfgfgfgfg = f6g6 = (f3)2g6 = 1 using the
fact that f and g commute, and the fact that f has order 3 and g
has order 6. This implies that the order of fg divides 6, by Lemma
1.2.

2. In U31, find all elements of the subgroup ⟨4, 30⟩.
We have 40 = 1, 41 = 4, 42 = 16, 43 = 2, 44 = 8, 45 = 1, and 302 = 1
in U31. Since multiplication in U31 commutes, every product of powers
of 4 and 30 must have the form 4a30b for some integers a and b. Since
45 = 302 = 1, by removing terms of the form 45 or 302, we can reduce a
and b so that 0 ≤ a < 5 and 0 ≤ b < 2. So the elements of ⟨4, 30⟩ are
1, 4, 42, 43, 44, 30·1, 30·42, 30·43, 30·44; that is, 1, 4, 16, 2, 8, 30, 27, 15, 29, 23.

3.
1 2 4 5 7 8

1 1 2 4 5 7 8
2 2 4 8 1 5 7
4 4 8 7 2 1 5
5 5 1 2 7 8 4
7 7 5 1 8 4 2
8 8 7 5 4 2 1

We have ord(1) = 1, ord(2) = 6, ord(4) = 3, ord(5) = 6, ord(7) = 3,
ord(8) = 2.
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4. List all of the elements of GL2(F2) and find the order of each element.

The elements are (
1 0
0 1

)
,

(
0 1
1 0

)
,

(
1 1
0 1

)
(
1 1
1 0

)
,

(
1 0
1 1

)
,

(
0 1
1 1

)
and their orders are respectively 1, 2, 2, 3, 2, 3.

5. Find two elements g, h of GL2(F2) such that ⟨g, h⟩ = GL2(F2).

This can most easily be done by trial and error using the list of elements
found earlier. In fact, if g is any element with order 2 and h is any element
with order 3 then the result holds.

6. We need to check the four group axioms. It is clear by definition that
A△B is a subset of X and is therefore an element of P(X), so G1 is
satisfied. To see that G3 is satisfied we note that the empty set ∅ has
the property A△∅ = ∅△A = A for every A ∈ P(X), and also A△A = ∅
for every A ∈ P(X) so that every element is its own inverse. The most
difficult axiom to check is G2: we must show that if A,B,C are subsets
of X then A△(B△C) = (A△B)△C.

Perhaps the easiest way to solve this is by considering the eight possibilities
for each x ∈ X. If x ∈ X belongs to none of A,B,C then it is not an
element of A△(B△C) and is also not an element of (A△B)△C. If x
belongs only to A then it is an element of both sets, and this is also the
case if it belongs only to B, and if it belongs only to C. It is also not very
difficult to see that if x ∈ X belongs to A and B but not C, or belongs to
A and C but not B, or belongs to B and C but not A, then it does not
belong to A△(B△C) and also does not belong to (A△B)△C. Finally, if
x ∈ X belongs to all three sets then it is an element of both A△(B△C)
and (A△B)△C. So x ∈ X belongs to A△(B△C) if and only if it belongs
to (A△B)△C and thus the two sets are identical as needed to prove G2.
This information could perhaps be summarised in a table. Another way
of expressing the same information would be to show that A△(B△C) and
(A△B)△C are both equal to the set of all x ∈ X which belong to an
odd number of the sets A,B,C. Yet another approach would be to use
the expression A△B = ((A ∪B) ∩ (A ∩B)c) and manipulate the implied
formulas for A△(B△C) and (A△B)△C to show that they are the same.
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