
WEEK 2 NOTES

1. FIRST ORDER PDE WITH CONSTANT COEFFICIENTS (CONTINUED)

Let’s continue on solving the first order linear PDEs of the form

(1.1) aUx + bUy = 0,

with a, b 6= 0 some constants.
Further discussion about the geometric approach Recall from last week that we know

the solution U is constant on each of the following straight lines:

y =
b

a
x+ c, c a constant.

Or equivalently, the straight line equations are given by

(1.2) bx− ay = c.

We call these lines characteristic lines.
Given that, the solution U(x, y) depends on the value of c only and one can write

U(x, y) = f(c) = f(bx− ay).

Question. How do we specify the function f?

For this, one needs to impose initial and/or boundary conditions. What are these?

Notation. In what follows it will be conceptually convenient to use coordinates (x, t)
rather (x, y) and think of t as a time —that is, the equations we will analyse describe
some process of evolution in time. Conventionally, the time coordinate is assigned to the
y-axis.

1.1. Initial and boundary conditions.

Definition 1.1.

i. A prescription of the value of the solution to a pde at t = 0 (i.e. along the x-axis)
will be called an initial condition.

ii. A prescription of the value of the solution to a pde at x = 0 (i.e. along the t-axis)
will be called a boundary condition.
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Note. More generally, boundary conditions can be prescribed on any line parallel to the
t-axis —i.e. lines of the form x = x• with x• a constant. More generally, one can have
combinations of boundary and initial data. Initial and boundary data arise from physical,
geometric and/or commonsensical considerations.

We exemplify these concepts with a couple of examples.

Example 1.2. Solve

4Ux − 3Ut = 0,

U(0, t) = t3 (boundary conditions).

From the previous discussion one has that a = 4, b = −3 and the solution to the equation
is constant along the lines

−3x− 4t = c.

t

x

Thus, the solution is of the form

U(x, t) = f(c) = f(−3x− 4t).

We now make use of the boundary condition to determine the function f . On the t-axis
one has that x = 0 so that c = −4t. Thus, one can write t = −c/4. Using the latter one
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can write, on the one hand, that

U(0, t) = t3 = − 1

64
c3.

On the other hand, from the general solution one has that

U(0, t) = f(c).

Hence, one concludes that

f(c) = − 1

64
c3.

Thus, the solution determined by the prescribed boundary data is given by

U(x, t) =
1

64
(3x+ 4t)3.

One can verify that the above expression is indeed a solution to the original problem by
direct evaluation.

Note. Observe that after prescribing boundary data one has obtained a unique solution.

Example 1.3. Solve

3Ux + 2Ut = 0,

U(x, 0) = sinx (initial condition).

In this case, following the general discussion gives a = 3, b = 2 so that the solution is
constant along the line

2x− 3t = c.

t

x

The general solution is then given by

U(x, t) = f(c) = f(2x− 3t).

The characteristic lines intersect the x-axis at x = c/2 (i.e. c = 2x). Now,

U(x, 0) = sinx = sin
c

2
.

However, one also has that
U(x, 0) = f(c).

Accordingly, one concludes that
f(c) = sin

c

2
,
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and the solution for the given initial data is given by

U(x, t) = sin
1

2
(2x− 3t).

1.2. An application: traffic models. Equations like (1.1) arise in many models. In this
section we consider a traffic model. This theory was invented in Manchester by Sir J.
Lighthill and G. B. Whitham in 1955. The ideas of this model are also applicable in the
discussion of glacier flows and sedimentation in river deltas.

In what follows we are interested in describing the traffic along a one-directional road.
We assume the road to be straight —although this is not key for the discussion. A position
along the road is described by the coordinate x. In this model the traffic density ρ(x, t) is
defined as the number of cars (or other vehicles) per unit distance at time t and position x.
The traffic density is a type of average.

x1 xx2

The problem one is interested in solving is to find ρ(x, t) assuming that the initial den-
sity ρ(x, 0) is known —that is, we know the initial distribution of cars along the road.

We construct an equation for the model by the following considerations: the number of
cars between two (arbitrary) fixed points x1 and another x2 at time t is given by∫ x2

x1

ρ(x, t)dx.

The rate of change of the number of cars between x1 and x2 with respect to time is given
by

∂

∂t

∫ x2

x1

ρ(x, t)dx =

∫ x2

x1

∂

∂t
ρ(x, t)dx

≈ (Rate of change of number of cars at x1 at time t)

−(Rate of change of number of cars at x2 at time t)

= Q(x1, t)−Q(x2, t).

We call Q(x, t) the flow at the position x and time t. The above expression says in plain
words that the change in the number of cars between x1 and x2 is due to cars entering and
leaving the section of the road under consideration —we can call this the law of conserva-
tion of cars. To complete the model one needs to say something about the flow Q(x, t). A
reasonable assumption is that when the density of cars is very small (i.e. ρ << 1) then Q
is proportional to the density of the cars, namely Q(ρ) ≈ kρ with k > 0 a constant —cf.
the plot of Q(ρ).
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Using the Fundamental Theorem of Calculus (keeping t fixed) one has that

Q(x2, t)−Q(x1, t) =

∫ x2

x1

∂

∂x
Q(x, t)dx.

Thus, one has that ∫ x2

x1

∂

∂t
ρ(x, t)dx = −

∫ x2

x1

∂

∂x
Q(x, t)dx.

However, the points x1 and x2 defining the section of the road under consideration are
arbitrary so

∂

∂t
ρ(x, t) = − ∂

∂x
Q(x, t).

Now, to conclude, we need to compute ∂Q(x, t)/∂x given that Q(x, t) = Q(ρ). For this
we use the chain rule:

∂Q

∂x
(ρ) =

d

dρ
Q
dρ

dx
= Q′ρx.

Hence, one obtains the equation

ρt +Q′(ρ)ρx = 0.

On the other hand, by our assumption above, Q′ = k, so one obtains

(1.3) ρt + kρx = 0.

This is an equation of the same form as (1.1) —so, we know how to solve it! Now, assume
that one is given an initial density of cars ρ(x, 0) = f(x) having the form of a bump as in
the figure below:

ρ

x

Using the method discussed in the previous sections we find that the solution for the
given initial data is given by

ρ(x, t) = f(x− kt).

The interpretation of this solution is as follows: as time increases, the initial bump moves
to the right (keeping its shape) —see the figure below. In other words, if there is little
traffic in the road, the cars move basically in formation.
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2. THE GENERAL LINEAR FIRST ORDER PDE WITH VARIABLE COEFFICIENTS

In this section we will discuss how to solve the equation

(2.1) a(x, y)Ux + b(x, y)Uy = c(x, y)U + d(x, y)

where a, b, c and d are functions of the coordinates (x, y). The method of characteristics
used to analyse the equation with constant coefficients can be extended to consider this
type of equation. The point of departure is the geometric perspective we followed in the
previous section.

2.1. Geometric approach. Equation (2.1) can be written as(
a(x, y), b(x, y)

)
· ∇U = c(x, y)U + d(x, y)

so that
∇~vU = c(x, y)U + d(x, y), with ~v ≡

(
a(x, y), b(x, y)

)
.
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In this case the vector ~v is no longer constant. This means that the characteristics are no
longer lines but curves. If the characteristics are of the form y = y(x) then they satisfy the
ordinary differential equation

(2.2)
dy

dx
=
b(x, y(x))

a(x, y(x))
.

Question. Can an ode always be solved?

There is a general result known as the Picard-Lindelöf theorem that basically says that
an ode always has a solution for given initial conditions. Of course, this result does not say
(at least directly) how to solve the equation.

In what follows we assume that we can solve the ode (2.2). This gives the solution in
the form y = y(x). Now, we compute the derivative of U along the characteristics —for
this we use the chain rule as follows:

d

dx
U(x, y(x)) =

dx

dx

∂U

∂x
+
dy

dx

∂U

∂y

= Ux +
b(x, y(x))

a(x, y(x))
Uy.

Finally, using equation (2.1) one obtains

d

dx
U(x, y(x)) =

c(x, y(x))

a(x, y(x))
U +

d(x, y(x))

a(x, y(x))
.(2.3)

This equation is, again, another ode. Its solutions yields the value of U(x, y) along a given
characteristic curve.

Note. If the characteristic curves cover the whole plane R2, then one obtains a solution
to equation (2.1) on the whole of R2. On the other hand, if the characteristics do not exist
somewhere, then the solution breaks down there —intuitively, one can say that the solution
does not know where to go!

2.2. Examples. We now exemplify the general theory of the previous subsection with a
number of examples.

Example 2.1. Find the general solution of

Ux + tUt = 0.

The equation can be rewritten as

(1, t) · ∇U = 0,

so that U is constant along the curves with tangent given by ~v = (1, y). The slope of the
curves is y/1 and, hence, the ordinary differential equation to be solved is

dt

dx
= t.

The solutions are given

t(x) = Cex, with C a constant.

These are the characteristics of the pde. A plot for various values of C is given below.
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It is observed that, in fact, the whole planes can be covered by these curves by varying
C —i.e.

R2 = {(x, t) | t = Cex, C ∈ R}.
Now, observe that for U(x, t(x)) = U(x,Cex) one has that

d

dx
U(x,Cex) = Ux + CexUt

= Ux + yUt = 0.

Thus, along each characteristic curve the solution is a constant and the solution can only
depend on C —that is,

U(x, y) = f(C).

However, as t = Cex, one has that C = te−x. Hence, one can write the general solution
as

U(x, t) = f(te−x),

where f is an arbitrary function of a single variable.

Example 2.2. Find the solution to the boundary value problem

Ux + tUt = 0,

U(0, t) = t3.

From the previous example we know that the general solution is given by

U(x, t) = f(te−x).

Thus, one has that
U(0, t) = f(t) = f(C).

But one also has that
U(0, t) = t3 = C3

Hence, f(C) = C3 and the required solution is given by

U(x, t) =
(
te−x

)3
= t3e−3x.
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After obtaining this solution, we will need to check by direct computation thatU(x, t) =
t3e−3x is, indeed, the required solution!

Let’s next see an example of an inhomogeneous PDE. In this case, the solution is not
constant along characteristic curves, but will satisfy an ODE along the characteristic.

Example 2.3. Find the general solutions for Ux − Ut = 1.

We see in this case a = 1, b = −2, c = 0, d = 1.
Our first step is to find the characteristic curves, they are given by solutions to the ODE

dt

dx
= −1.

Solve it and we get the characteristic (lines) t = −x+ C.
Now we can write the left hand side of the equation as an ordinary derivative along

characteristic lines using t(x) = −x+ c. Namely

d

dx
U(x, t(x)) = Ux + Ut ·

dt

dx
= Ux + Ut · (−1) = 1,

where we used that U satisfies the PDE in the last equality.
Integrate on both sides with respect to x, we get

U(x, t) =

∫
1dx+ f(C) = x+ f(C),

There is a dependence on f(C) because the constant may depend on which characteristic
line it is on, and C is used to parametrise the family of characteristics.

Now substitute back C = t + x using the characteristic equation, we get the general
solution

U(x, t) = x+ f(t+ x),

for any f .
Sometimes, the characteristic lines may not be filling up the whole planes. In those

cases, the solutions may not exists for every (x, t) on the plane.

Example 2.4. Find the solution to the boundary value problem√
1− x2Ux + Ut = 0,

U(0, t) = t.

In this case the ode for the characteristic curves is given by

dt

dx
=

1√
1− x2

.

The general solution to this ode is

t(x) = arcsinx+ C

—why? A plot of the curves for various values of C is given below:
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Observe, again, that the curves do not cover the whole plane. Now, by the general theory
(or direct computation)

d

dx
U(x, t(x)) = 0,

so that

U(x, t(x)) = f(C).

Hence, the general solution to the equation is given by

U(x, t) = f(t− arcsinx).

Evaluating at x = 0 one finds that U(0, t) = f(t). Thus, comparing with the boundary
condition one concludes that f(t) = t. Hence, the solution we look for is

U(x, t) = t− arcsinx.

Example 2.5. Find the general solution to

(1 + x2)Ux + Uy = 0.

In this case the equation for the characteristic curves is given by

dy

dx
=

1

1 + x2
.

The solution to this ode is given by (why?):

y(x) = arctanx+ C, C a constant.

A plot of the characteristics for various values of C is given below.
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Again one can check that they actually cover the whole plane.
Now, from the general theory one has that

U(x, arctanx+ C)

is constant along the characteristics —of course, one can also verify it by direct computa-
tion. Hence,

U(x, arctanx+ C) = f(C) = constant for given C.

On the other hand one has that

C = y − arctanx

so that

U(x, y) = U(0, y − arctanx) = f(y − arctanx),

with f a function of a single argument. This is the general solution of the equation.

Example 2.6. Find the general solution to

Ux + 2xy2Uy = 0.

In this case the equation for the characteristics is given by

dy

dx
= 2xy2.

It follows that ∫
dy

y2
=

∫
2xdx+ C.

Integrating one gets

−1

y
= x2 + C,

so that after some reorganisation one ends up with

y =
1

C − x2
.

A plot of the characteristic curves for various choices of C are given below.
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Note that the curves do not seem to fill the plane so that the solution may not exist for all
(x, y). Again, from general theory we know that U(x, y) is constant along these curves.
That is,

U(x, y(x)) = f(C).

Observing that in this case

C = x2 +
1

y

one concludes that the required general solution is given by

U(x, y) = f

(
x2 +

1

y

)
.

Example 2.7. Solve the initial value problem{
Ut + xUx = sin t, x ≥ 0

U(x, 0) = x

This is an example of an inhomogeneous equation. The ode for the characteristics is in this
case given by

dt

dx
=

1

x
.

The general solution to this ODE is given by

t(x) = lnx+ C̃,

or

et = Cx.

It will be convenient to rewrite the latter in a slightly different form: t = lnx + lnC, so
that t = lnCx. A plot of the curves for various values of C is given below:
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From the general theory (or direct computation) one further obtains the ode
d

dx
U(x, t(x)) =

sin t

x
Expressing t in terms of x using the equation for the characteristic curves one finally finds
that

dU

dx
=

sin ln(Cx)

x
.

Using the substitution z = lnCx one has that∫
sin ln(Cx)

x
dx =

∫
sin zdz = −cosz = − cos lnCx,

so that
U = − cos lnCx+ f(C).

In particular, using the characterisitic equation et = cx to replace C by C = et

x , we get
the general solution

U(x, t) = − cos ln(et) + f(
et

x
) = − cos t+ f(

et

x
).

To specify the function f , we use the initial condition. When t = 0, we have Cx = 1 and
x = 1

C , so

1

C
= x = U(x, 0) = − cos ln(CX) + f(C) = −1 + f(C).

This gives f(C) = 1 + 1
C . Substituting et = Cx general solution to the PDE is

U(x, t) = − cos lnCx+ f(C) = − cos t+ 1 +
x

et

Example 2.8. Find the general solution to the equation

xUx + yUy = kU, k a constant.

This equation is known as an Euler equation. The characteristic equation is then given by
dy

dx
=
y

x
,

which has general solution given by

y(x) = Cx,
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withC a constant —why? A plot of the curves is shown below —observe that they intersect
at the origin.
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From the general theory (or direct computation) one has that
d

dx
U(x, y(x)) =

k

x
U.

We can then integrate it as follows:∫
dU

U
= k

∫
dx

x
+ f(C)

so that
U(x, y(x)) = f(C)xk.

Now, using the equation C = y/x to eliminate C one obtains the general solution

U(x, y) = f

(
y

x

)
xk.

3. A SIMPLE NON-LINEAR FIRST ORDER PDES

In this section, we will try to use the method of characteristic to solve a simple non-
linear first order PDEs whose characteristics are straight lines.

Example 3.1. Solve the Initial value problem{
Ux + Ut + U2 = 0

U(x, 0) = sinx
(3.1)

This PDE is non-linear and homogenous!
To solve this problem, we first move the non-linear term to the write hand side.

Ux + Ut = −U2.

Next, using the the same theory as finding characteristics as in 2.1 in Week 2 notes, we
get the characteristic equations

∂t

∂x
=

1

1
= 1.
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And thus the characteristics are straight lines

x = t+ C

So the equation (3.1) becomes
d

dx
U(x, t(x)) = −U2

−1
U2(x, t(x))

d

dx
U(x, t(x)) = 1.

Integrating both sides, we get
1

U(x, t(x))
= x+ f(C).

Here f can be any differentiable functions.
Now using the initial value U(x, 0) = sinx to specify. When t = 0, we have x = C.

And thus when t = 0, we have
1

C + f(C)
=

1

x+ f(C)
= U(x, 0) = sinx = sinC.

So

f(C) =
1

sinC
− C.

Using C = x− t, we then have

x+ f(C) = x+
1

sinC
− C = x+

1

sin(x− t)
− (x− t) = t+

1

sin(x− t)
.

So the general solution to the PDE is

U(x, t) =
1

t+ 1
sin(x−t)

=
sin(x− t)

t sin(x− t) + 1
.

The solution exists when t sin(x− t) + 1 6= 0.


