
Formal Languages and Groups as Memory:

An Exposition of the Main Step

Abstract

The primary goal of this paper is to present an exposition of the
main step of Kambites proof of the Chomsky-Schutzenberger repre-
sentation theorem as well as a formal construction of M -automata and
Dyck languages in the lean theorem prover. Formalization, in this
case, serves as a tool to aid in exposition. To make the exposition as
clear as possible, we give proofs in a human-readable format equivalent
to the formalized proofs (the reader may find the formalized proofs here
: https://github.com/koly777/chomsky-schutzenberger-lean).

We only present proofs that are directly relevant and/or showcase
interesting content.

Contents

1 Preliminaries 2

2 M-automata 2
2.1 A Formal Construction of M -Automata 3

3 Dyck Languages 4
3.1 A Formal Construction of D(X) 5
3.2 The Relationship Between D(X) and F (X) 6

4 The Representation Theorem 11
4.1 Permissible Paddings and Regular Languages 11
4.2 Proposition 14 . 14
4.3 Lemma 15 . 17
4.4 Proposition 16 . 17

5 References 19

1

NAME REDACTED

https://github.com/koly777/chomsky-schutzenberger-lean

1 Preliminaries

It would be helpful for the reader if they are familiar with the basics
of automata theory, though not strictly necessary for this paper. This
section collects some results about solving equations in the free monoid
over some alphabet X. Recall that the free monoid over X, denoted
X∗ consists of all words whose letters come from some alphabet X.
We will denote by ε, the empty word consisting of no letters.

In particular we will make use of the following lemmas frequently.
We note that these lemmas are already present in the lean library,
and so we give them without proof.

Lemma 1 For words u, v, u′, v ∈ X∗, uv = u′v′ iff there exists w
such that u′ = uw and u = wv′ or there exists a w′ such that u = u′w′

and v′ = w′v.

Lemma 2 For words u, v, u′ ∈ X∗ and x ∈ X, we have that uv =
xu′ iff u = ε and v = xu′ or there exists a w such that u = xw and
u′ = wv.

2 M-automata

M -automata serve as a generalisation of certain classes of blind au-
tomata equipped with some storage mechanism. An example of such
blind automata is the class of blind k-counter automata studied by
Sheila Greibach in her paper 1978 paper “Remarks on Blind and Par-
tially Blind One-Way Multicounter Machines” which was helpful in
constructing a formal definition of “blindness”.

An M -automaton over a monoid M is a non-deterministic finite
state machine augmented with a register that may store a given element
of the monoid. At any point in its operation, it may multiply the
contents of the register on the right by an element of the monoid as
it transitions from state to state. The automaton may not use the
contents of the register to transition into another state, and this is
what is mean when M -automata are described as being “blind”.

The automaton is initialized with the contents of the register set
to 1 ∈ M . A word is accepted by the automaton if after reading the
word, the contents of the register returns to 1.

More formally an M -automaton over a monoid M consists of a
finite alphabet X, a finite set of states Σ, a start state q0, a set of final
states Q ⊆ Σ and a transition function δ : Σ× (X ∪ {ε}) → P(Σ×M).
Thus the function δ takes in a state and a letter of the alphabet X (or
the empty word ε) and returns a set of pairs (q,m) where q ∈ Σ and

2

m ∈ M . We now define the operation of reading a word. We define
the binary relation ⊢ on Σ× (X ∪ {ε})∗ ×M by

(σ, aw,m) ⊢ (σ′, w, n)

where a ∈ (X ∪ {ε}) and w ∈ (X ∪ {ε})∗, if there exists an m′ such
that (σ′,m′) ∈ δ(σ, a) and n = m ·m′.

This relation corresponds to the process of reading a letter a or if
a = ε, then it corresponds to transitioning on the empty string. Denote
by ⊢∗, the reflexive and transitive closure of ⊢. We say that a word w
is accepted if (q0, w, 1) ⊢∗ (qf , ε, 1) holds and qf ∈ Q.

2.1 A Formal Construction of M-Automata

We formalize the class of M -automata as a structure in lean which
we call bRMA 1for “blind Register Monoid Automata”. The parameters
of this structure consists of a type M which has a monoid instance,
an alphabet type α, a type of states σ, and an indexing type ι which
indexes into the elements of M . We allow that each of these types be
infinite, and finite type instances for α, σ and ι must be provided for
true M -automata.

The fields of bRMA consists of a transition function which we call
step of type σ → option α → set (σ × ι). We note that the option
type consists of elements of the form none (which we take to mean
the empty string ε) or some (a) where a is an element of type α corre-
sponding to a letter a. Thus step is a function which takes in a state
of type σ, a letter or the empty string and returns a set consisting of
pairs whose elements are of type σ × ι. The next field is called start

which is an element of type σ, this is the designated start state. The
field accept is an element of type set σ corresponding to the final
states and finally the field to monoid is a function that takes in an
element of the indexing type ι and produces an element of M .

We then define a relation which we call cstep (corresponding to
⊢) which takes in two triples of type σ × list(option α) × M and
returns a proposition (we note that a string of letters in (X ∪ {ε})∗ is
modelled as a list whose elements come from the option type over α).
The relation states that (s, w1 · · ·wn,m) is related to (s′, w′

1 · · ·w′
n,m

′)
if there exists an element i of the indexing type ι, such that (s′, i) ∈
step (s, w1) and m′ = m · to monoid(i) and w2 · · ·wn = w′

2 · · ·w′
n.

We then take the reflexive and transitive closure of cstep which we
call der and we define the set accepts which consists of elements w of
type list(option α) such that there exists a final state S ∈ accept so
that der holds between (start, w, 1) and (S, ε, 1). We take the image
of this set under a function which removes instances of none (i.e the

1The code may be found in the file bRMA.lean

3

empty string) in w to yield the language accepted by the bRMA under
consideration.

We prove the theorem to submonoid bRMA correct using our def-
initions, corresponding to Proposition 1 in Kambites paper; namely
that for any M -automaton there exists an N -automaton that accepts
the same language and N is a finitely generated monoid. Although
the proposition is somewhat trivial, it provides a template for formal
proofs involving our construction of M -automata.

3 Dyck Languages

Let X = {(,)} be an alphabet consisting of a left parenthesis “(” and a
matching right parenthesis “)”. Now consider the set of well-balanced
strings of parentheses, that is; for each left parenthesis appearing in the
string there is a matching right parenthesis appearing after it some-
where in the string. This set is the Dyck language over one pair of
parentheses.

We may generalize Dyck languages to more than one pair of paren-
theses and there are many ways to formalize Dyck languages, but per-
haps the simplest construction that readily generalizes to any set of
parentheses2 is as follows. Let X be an alphabet and let X−1 be the
set of formal inverses of the elements of X and consider the monoid
with presentation

D(X) = 〈x ∈ X ∪X−1 | x · x−1 = 1〉.

The identity of this monoid is the empty word ε, and multiplication in
this monoid is given by concatenation of words followed by reducing
the word according to the relation specified in the presentation. The
Dyck language is then simply the subset of (X∪X−1)∗ whose elements
are equal to 1 in D(X).

Dyck languages also arise naturally in certain areas of computer
science. A stack is a data structure that stores some list of elements,
we may push an element onto the top of the stack and we may pop
an element off of the top of the stack. We may describe the actions
of pushing and popping on a stack by partial functions on the free
monoid over some alphabet X.

Recall that a partial function is a function which is not defined
for all inputs. If our stack stores elements of some set X, then at
any point, the contents of the stack is a word in the free monoid X∗.
Thus the action of pushing an element onto the top of the stack may
be given by the partial function3 Px : X∗ → X∗ with Px(w) = wx,

2There is no restriction that the set be countable.
3Note that this function is actually total, that is; defined for every input.

4

and we may describe the action of popping an element from the top
of the stack by Qx : X∗ → X with Qx(wx) = w. We note that
Qx is the right inverse of Px. If we consider the submonoid of the
monoid of partial functions over X∗ generated by Px and Qx, then we
arrive at the polycyclic monoid over X, denoted P (X). If we identify
x with Px and x−1 with Qx, then we have the monoid presentation,
P (X) = 〈x ∈ X ∪X−1 | x · x−1 = 1 and x · y−1 = 0 for x ∕= y〉. It is
easy to see that the set of words over X ∪X−1 equal to 1 in P (X) is
precisely the set of words that are equal to 1 in D(X).

So far we have defined what is known as the one-sided or semi-Dyck
language, we now turn our attention to the two-sided Dyck language.
Let X = {(,)} be our alphabet, we now remove the restriction that
every left parenthesis has a right parenthesis appearing after it some-
where in the string. Instead we simply insist that every left parenthe-
sis has a corresponding right parenthesis somewhere in the string (and
vice versa). To construct the two-sided Dyck language, we use a group
presentation given by

F (X) = 〈x ∈ X ∪X−1 | x · x−1 = 1 = x−1 · x〉.

The set of words over X ∪ X−1 that are equal to 1 in F (X) is then
the two-sided Dyck language over X. The group F (X) is known as the
free group over X and is a well-known and well-studied group that is
ubiquitous in combinatorial group theory. It is easy to see that D(X)
forms a proper submonoid of F (X).

3.1 A Formal Construction of D(X)

In our formal construction of D(X) in lean, we required some impor-
tant ideas from the theory of term rewriting systems.4

Definition (TRS). A term rewriting system is an ordered pair
(X,⇒) consisting of an alphabet X and a binary relation ⇒ defined
on X∗. This relation is called a rewriting relation. Denote by ⇒∗ the
reflexive and transitive closure of ⇒. We say that u ∈ X∗ rewrites to
v ∈ X∗ if u ⇒∗ v holds.

For use later on, we define an induction principle for the reflexive
and transitive closure of a relation (note that this principle was present
in the lean library).

Definition (RT-closure induction) Let R ⊆ X ×X be a relation
and let R′ denote its reflexive and transitive closure. Let y ∈ X. Sup-
pose we wish to prove some property P about elements of X given that

4The code may be found in the file dyck.lean.

5

for all x ∈ X we have xR′y. The base case is that P holds for y. If for
every a, b ∈ X we have that aRy and yR′b and P holds for b implies
P holds for a then P holds for every x ∈ X.

Given our monoid presentation of D(X), we may construct D(X)
as the quotient of the free monoid over X by the relation specified. To
do this let u · x · x−1 · v ⇒ uv be the relation, u · x · x−1 · v reduces to
uv in a single step where u, v ∈ X∗ and x, x−1 ∈ X ∪ X−1. Taking
the quotient the free monoid X∗ by single-step reduction yields the
monoid D(X) with identity equal to the empty string and multiplica-
tion corresponding to concatenation of words followed by single-step
reduction.

We will denote by ⇒∗ the reflexive and transitive closure of ⇒.
We proved that two elements w,w′ ∈ D(X) are equal iff there exists
a word u such that w ⇒∗ u and w′ ⇒∗ u. This fact allows us to view
D(X) as a term rewriting system, and subsequently, simplify many
proofs. In proving this fact we proved that D(X) when viewed as a
trs has the Church-Rosser property defined as follows.

Definition (Church-Rosser Property). A term rewriting system
(X,⇒) has the Church-Rosser property if for u, v, v′ ∈ X∗, we have
that u ⇒∗ v and u ⇒∗ v′ implies that there exists a word w such that
v ⇒∗ w and v′ ⇒ w.

3.2 The Relationship Between D(X) and F (X)

We conclude this section by defining the notion of positive and negative
elements in D(X) and F (X) and prove some useful lemmas. Elements
fromX are called positive generators and elements fromX−1 are called
negative generators. If a word w ∈ (X ∪ X−1)∗ can be written as a
non-empty product of positive generators then it is a positive element,
negative elements are defined similarly. The following lemmas and
theorems will be necessary in the proof of Proposition 14.

We first prove Lemma 12 from Kambites paper. In doing so we
were required to prove the following.

Lemma 3 Let G be a group. Then for all x, y, z ∈ G, xyz = 1 iff
yzx = 1.

Proof. Let x, y, z ∈ G. Now

xyz = 1 ⇐⇒ yz = x−1

⇐⇒ yxz = x−1x = 1.

6

Lemma 4 If xw represent the identity in F (X), then w has prefix
ex−1 where e represents the identity.

Proof. We have that xw ⇒∗ ε so that w ⇒∗ x−1. We now proceed by
induction on ⇒∗. In the case where w = x−1, then it suffices to take
e = ε. Otherwise suppose w ⇒ w′ and w′ ⇒∗ x−1. Since w′ ⇒ x−1

there exists words u, v and y ∈ X ∪ X−1 such that w = uyy−1v and
w′ = uv. The induction hypothesis tells us that there exists a word e′

representing the identity and e′x−1 is a prefix of uv. We have to prove
that there exists an e that represents the identity such that ex−1 is a
prefix of uyy−1v. Write ex−1s = uv. Applying the necessary lemmas
we have the following cases

Case: u = e′u′ and x−1s = u′v for some u′.

We have two more cases.

Case: u′ = ε and x−1s = v.
Since u = e′ it suffice to take e = u′yy−1 which represents
the identity and u′yy−1x−1 is a prefix of uyy−1v since v
begins with x−1.

Case: u′ = x−1c and s = cv for some c.
Now we have that u = e′x−1c so it suffices to take e = e′.

Case: e′ = uu′ and v = u′x−1s for some u′.

Here it suffices to take e = uyy−1u′ so that this represents e = uu′

which represents the identity and uyy−1u′x−1 is clearly a prefix
of uyy−1v since v = u′x−1s.

Lemma 5 If ux represent the identity in F (X), then u has suffix
x−1e where e represents the identity.

Proof. Omitted.

With the above lemmas we may prove Lemma 12.

Lemma 6 If uxv represents the identity in F (X), then either u has
suffix x−1e or v has prefix ex−1 where e represents the identity.

Proof. By lemma 3 we have that xvu represents the identity and so
by lemma 4 we have that there exists a prefix e′x−1 of vu where e′

represents the identity. Therefore we can write e′x−1s = vu. We have
the following cases

Case: v = e′u′ and x−1s = u′u for some u′.

We have two more cases.

7

Case: u′ = ε and x−1s = u.
Now we have v = e′ and so we have ux represents the identity
so apply lemma 5

Case: u′ = x−1c and s = cu for some c.
Here we have v = e′x−1c so set e = e′ and v clearly has
prefix ex−1.

Case: e′ = vu′ and u = u′x−1s for some u′.

In this case we have xvu = xvu′x−1s = xe′x−1s which represents
the identity so that s represents the identity. Therefore set e = s
and so u has suffix x−1e.

Lemma 7 If a word w ∈ (X ∪X−1)∗ represents the identity D(X)
then every prefix of w represents a positive or identity element in
D(X).

Proof. Suppose that w represents the identity. Then we know that w
reduces to ε when we view D(X) as a trs. We proceed by induction
on the rewrite relation. In the case where w = ε, we have that p is a
prefix of ε so p = ε and p represents the identity in D(X). Now let
w,w′ ∈ (X ∪ X−1)∗ and suppose that w ⇒ w′ and w′ ⇒∗ ε. Since
w ⇒ w′, we know that there exists u, v ∈ (X ∪X−1) and x ∈ X such
that w = uxx−1v and w′ = uv. The induction hypothesis tells us that
every prefix of uv is a positive element or represents the identity.

Let p be a prefix of uxx−1v. Then we have that there exists some
word s such that ps = uxx−1v. Applying the necessary lemmas re-
garding equations in the free monoid we arrive at the following case
distinctions:

Case: u = pu′ and s = u′xx−1v for some u′.

In the first case we have that p is a prefix of u so the induction
hypothesis tells us that p is a positive or identity element.

Case: p = uu′ and xx−1v = u′s for some u′.

We then have another two cases.

Case: u′ = ε and s = xx−1v
In this case p = u and so p is a prefix of u. The induction
hypothesis tells us that p is a positive or identity element.

Case: u′ = xc and x−1v = cs for some c.
We have another two cases.

Case: c = ε so that u′ = x and s = x−1v.
Now u is a positive or identity element, in either case
p = uu′ = ux is positive.

8

Case: c = x−1d and v = ds.
In this case we have that p = uxx−1d. Now the induc-
tion hypothesis tells us that ud is positive or represents
the identity (since v = ds it follows that ud is a prefix
of uds = uv). In either case we have that uxx−1d repre-
sents the element ud so it follows p = uxx−1d represents
a positive or identity element.

Lemma 8 If a word w ∈ (X ∪X−1)∗ represents the identity D(X)
then every suffix of w represents a negative or identity element in
D(X).

Proof. Omitted.

The above two lemmas lend themselves to sufficient and necessary
conditions for a word to represent the identity in D(X).

Theorem 1 Every prefix of w represents a positive or identity ele-
ment in D(X) and every suffix of w represents a negative or identity
element in D(X) iff w represents the identity in D(X).

Proof. (⇒) Firstly we have that w represents a positive or identity
element and w represents a negative or identity element as w is a
prefix/suffix of itself. We can not have that w be both positive and
negative, and similarly we can not have that w be both the identity
and positive/negative, so it must be the case that w represents the
identity in D(X). (⇐) Follows from lemma 7 and lemma 8.

Lemma 9 Let w ∈ (X ∪X−1)∗, then every prefix of w represents a
positive or identity element in D(X) iff every prefix of w represents a
positive or identity element in F (X).

Proof. It is clear that any negative element in D(X) is a negative
element in F (X) and any word representing the identity in D(X) also
represents the identity in F (X).

We now proceed by induction on the length of the word w. In the
case where w = ε, we have that w every prefix of w (being just ε)
represents the identity in D(X). If w = x for some x ∈ (X ∪ X−1),
then the only prefix of w is x and we cannot have that x represents the
identity in F (X), so it must be positive in F (X). Now x is a single
positive generator and hence is positive in D(X).

Assume now as our induction hypothesis that, if every prefix of
w = w1 · · ·wn represents a positive or identity element in F (X), then
every prefix of w represents a positive or identity element in D(X).

9

Now suppose every prefix of w · wn+1 represents a positive or identity
element in F (X). The induction hypothesis tells us that every prefix
of w represents a positive or identity element in D(X). Now let p be
an arbitrary prefix of w ·wn+1. This implies that either p is a prefix of
w in which case p represents a positive or identity element in D(X) or
p = w ·wn+1. We know that w represents a positive or identity element
in D(X). We also know that p represents a positive or identity element
in F (X). Therefore we have four cases.

Case: p is positive in F (X) and w is positive in D(X)

In this case since p = w · wn+1 is positive, we have to check
the two cases corresponding to the case that wn+1 is a positive
generator say x or a negative generator x−1. In the case that
wn+1 = x, we have that wx is positive in D(X). In the case
where wn+1 = x−1, we know that since w is positive in D(X) we
have that w can be written as a product w′ of positive generators
so that w′x−1 is positive. This implies w′ = ux for some u. Now
p represents uxx−1 which represents u in D(X). If u = ε, then u
represents the identity in D(X), otherwise since w′ = ux and u
is non-empty, it follows u is positive in D(X).

Case: p is positive in F (X) and w represents the identity in D(X).

In this case p = w ·wn+1 represents wn+1 in F (X) and since this
is positive we must have that wn+1 is a positive generator and
hence positive in D(X).

Case: p represents the identity in F (X) and w is positive in D(X)

Suppose wn+1 = x. Since w is positive and wx represents the
identity, we must have that w represents x−1 in F (X). This
contradicts the fact that w is positive in D(X), so we must have
wn+1 = x−1. In this case w represents x in F (X) and D(X) so
that p = wx−1 represents xx−1 which represents the identity in
D(X).

Case: p represents the identity in F (X) and w represents the identity
in D(X)

Here we have a contradiction as p = w · wn+1 represents wn+1

in F (X) which cannot possibly be the identity. Thus this case is
not possible.

Lemma 10 Let w ∈ (X ∪X−1)∗, then every suffix of w represents
a negative or identity element in D(X) iff every suffix of w represents
a negative or identity element in F (X).

Proof. Omitted.

10

4 The Representation Theorem

In light of the connections between the theory of rational transduc-
tions and M -automata, the Chomsky-Schutzenberger representation
theorem has the following interpretation in the M -automata setting

(i) The language L is context-free.

(ii) The language L is accepted by a polycyclic monoidM -automaton.

(iii) The language L is accepted by a free group M -automaton.

Kambites proof is that (ii) implies (iii), that is; given a language
accepted by a polycyclic monoid M -automaton, we can construct an
M -automaton over some free group that accepts the same language.

Denote by X# to be the set (X ∪ {#}) ∪ (X ∪ {#})−1 where #
is a symbol not in X. The main step in the proof involves padding
words in (X ∪ X−1) with a new symbol # in such a way so that
a word represents the identity in P (X) iff it admits a padding that
represents the identity in F (X#). These padded words may be then
used to construct an F (X#) automaton accepting the same language
as a P (X) automaton. As we will be proving statements about the
set of words representing the identity in P (X), it suffices that these
statements hold for elements representing the identity in D(X).

We recall Kambites definition of an element x in the free group
being a minimum of a word w in the free group.

Definition We say that x ∈ F (X) is a minimum of w if w has
a prefix representing x in F (X) and no prefix which represents x is
immediately followed by a negative generator.

4.1 Permissible Paddings and Regular Languages

Kambites defines a permissible padding of a word w1 · · ·wn ∈ X∗ to be
a word of the form x1 · · ·xn(#

−1)k where k ∈ N and each xi is of the
form wi# if wi is a positive generator and (#−1)kwi# where k ∈ N if
wi is a negative generator.

In order to formally define permissible paddings, we begin with a
brief discussion about regular languages and regular expressions. Let
X be an alphabet, a regular expression is defined inductively as follows:

(i) 0 and 1 are regular expressions.

(ii) If x ∈ X, then x is a regular expression.

(iii) If x and y are regular expressions then so is their product x · y,
and their sum x+ y.

(iv) If x is a regular expression, then x∗ is a regular expression.

11

Let the set of all regular expressions over X be denoted Reg(X). We
then endow regular expressions with the following operation which
when applied to a regular expression, generates a language known as
a regular language, this operation is defined recursively. Let ‖ · ‖ :
Reg(X) → P(X∗) be defined by,

‖0‖ = ∅
‖1‖ = {ε}
‖x‖ = {x} where x ∈ X

‖x+ y‖ = ‖x‖ ∪ ‖y‖
‖x · y‖ = ‖x‖ · ‖y‖
‖x∗‖ = (‖x‖)∗

where the product of two sets A,B ⊆ X∗ is defined as the set con-
taining all words whose prefixes come from A and whose suffixes come
from B (i.e the elements of A “followed” by the elements of B). The
star of a set A ⊆ X∗ is defined as all words that can be formed
as a finite concatenation of elements of A. As an example consider
({ab})∗ where a, b ∈ X, then this the set consisting of the elements
{ε, ab, abab, ababab, ...}. So (ab)∗ is simply ab repeated zero or more
times.

Remark Regular languages are connected to our definition of M -
automata by letting the monoid M = {1}. The resulting automaton is
equivalent to a non-deterministic finite state machine, which recognizes
regular languages.

Given a word w ∈ X∗, we may use a regular expression to define the
set of permissible paddings5 of w. Define the function f : X ∪X−1 →
Reg(X) to pad a single letter as follows,

f(x) =

!
x ·# if x is a positive generator

(#−1)∗ · x ·# if x is a negative generator

Then for x1 · · ·xn define the function pad : (X ∪ X−1)∗ → Reg(X#)
by setting

pad(x1 · · ·xn) =

"
n#

i=1

f(xi)

$
· (#−1)∗

The set of permissible paddings of a word w is then simply ‖pad(w)‖.
We call a padding of a letter x ∈ X ∪X−1 (i.e an element of the lan-
guage generated by f(x)) to be a letter padding and we call a padding
of the form

%n
i=1 f(xi) a semi-padding. We conclude this section with

some useful lemmas about permissible paddings.

5May be found in the file permissible paddings.lean

12

Lemma 11 Every semi-padding of w is a permissible padding of w.

Proof. A permissible padding of w consists of a semi-padding followed
by the symbol #−1 zero or more times. Thus every semi-padding w′

of w is also a permissible padding with #−1 occurring zero times after
w′.

Lemma 12 Semi-paddings are closed under multiplication in the
sense that if u′ is a semi-padding of u and v′ is a semi-padding of v,
then u′v′ is a semi-padding of uv.

Proof. Let u = u1 · · ·un and v = v1 · · · vm. Suppose u′ is a semi-
padding of u and v′ is a semi-padding of v. We have to show that
u′v′ ∈ ‖

%n
i=1 f(ui) ·

%m
i=1 f(vi)‖ equivalently we need to show u′ ∈

‖
%n

i=1 f(ui)‖ and v′ ∈ ‖
%m

i=1 f(vi)‖ by definition of the product of
two sets in the free monoid. Now this follows from the fact that u′ is
a semi-padding of u and v′ is a semi-padding of v.

Lemma 13 If u′ is a semi-padding of u and v′ is a permissible
padding of v, then u′v′ is a permissible padding of uv.

Proof. Since v′ is a permissible padding of v, it is the product of a
semi-padding q of v and the symbol #−1 following q some number of
times. Let q′ = (#−1)k for some k ∈ N and write v′ = qq′. Since
semi-paddings are closed under multiplication we have that u′q is a
semi-padding of uv so that u′v′ = u′qq′ is a permissible padding of
uv.

Lemma 14 If u#−1v is a semi-padding of w, then u#−1#−1v a
semi-padding of w.

Proof. Since u#−1v is a semi-padding of w, we can split the word
u#−1v into a product of letter paddings where the given occurrence of
#−1 occurs in one of these letter paddings. This letter padding must
pad a negative generator since #−1 cannot appear as a padding of a
positive generator. By the definition of a letter padding, we can repeat
#−1 any number of times before the generator, so we can adjoin #−1 on
the left of this generator and the resulting word is still a semi-padding
of w.

Lemma 15 If u#−1v is a permissible padding of w, then the word
formed by deleting all occurrences of # and #−1 from v must either
be the empty word ε or must begin with a negative generator.

13

Proof. Let v′ denote the word formed by deleting all occurrences of #
and #−1 from v. Suppose u#−1v is a permissible padding of w. It
must be the case that the given occurrence of #−1 either pads the end
of w or occurs in a letter padding of a negative generator. In the first
case we have that v′ is the empty word and in the second case we have
that v′ begins with some negative generator as #−1 may only appear
before a negative generator.

Remark. Type theoretically, we use the sum type ⊕ to adjoin the
single point type unit (which we choose to mean #) to our alphabet
α to get α ⊕ unit as a new type whose elements consist of either
elements of type α or the single element of the unit type. This is the
type theoretical analogue of the disjoint union of two sets.

4.2 Proposition 14

With all of these definitions and lemmas at hand we may begin to
prove Proposition 14 which states that the following are equivalent if
w is a word representing the identity in F (X)

(i) w represents the identity in D(X)

(ii) Every prefix of w represents a positive or identity element in
F (X)

(iii) The only minimum of w is the identity of F (X).

Note: We were not able to formally verify that (iii) implies (ii).

Theorem 2 (i) ⇒ (ii) Suppose w represents the identity in D(X),
then every prefix of w represents a positive or identity element in F (X).

Proof. Since w represents the identity in D(X), we have that every
prefix of w represents a positive or identity element in D(X) and hence
F (X) by lemma 9.

To prove that (ii) implies (i) we require the following,

Lemma 16 If w represents the identity in F (X) and every prefix of
w represents a positive or identity element, then every suffix represents
a negative or identity element.

Proof. Since w represents the identity in F (X), we have that w ⇒∗ ε.
We proceed by induction on the rewrite relation of F (X) when viewed
as a trs. In the case where w = ε, we have that every prefix/suffix is
simply ε which clearly represents the identity in F (X) so that every
suffix represents the identity.

14

Otherwise suppose that w ⇒ w′ and w′ ⇒∗ ε. It follows that there
exists words u, v and x ∈ X such that uxx−1v ⇒ uv and uv ⇒∗ ε.
The induction hypothesis tells us that if every prefix of uv represents a
positive or identity element then every suffix of uv represents a negative
or identity element.

Suppose that every prefix of uxx−1v represents a positive or iden-
tity element. It is easy to see that every prefix of uv also represents
a positive or identity element so that we have that every suffix of uv
represents a negative or identity element.

Now let s be an arbitrary suffix of uxx−1v and write uxx−1v = ts.
Making repeated use of the necessary lemmas about equations in the
free monoid, we identify the following possible cases:

Case: u = tu′ and s = u′xx−1v for some u′.

In this case we have that u′v is a suffix of uv so that u′v rep-
resents a negative or identity element. In the case that u′v is a
negative element it follows that since s reduces to u′v that s is
negative element. If u′v represents the identity then s represents
the identity for the same reason.

Case: t = uu′ and xx−1v = u′s for some u′

Here we have two more cases.

Case: u′ = ε and xx−1v = s.
In this case we have that v is a suffix of uv so represents
a negative or identity element, in which case it follows that
since xx−1v = s reduces to v that s represents a negative or
identity element.

Case: u′ = xc and x−1v = cs for some c.
We have two more cases.

Case: c = ε and x−1v = s.
In this case we have v is negative or represents the iden-
tity. If v is negative then so is s = x−1v and if v repre-
sents the identity then s reduces to x−1 which is nega-
tive.

Case: c = x−1d and v = ds for some d.
Since s is a suffix of v which is a suffix of uv it follows
that s is negative or represents the identity.

Theorem 3 (ii) ⇒ (i) If every prefix of w represents a positive or
identity element in F (X) and w represents the identity in F (X) then
w represents the identity in D(X).

Proof. We have that every prefix of w represents a positive or identity
element in F (X) and henceD(X) by lemma 9. By the previous lemma,

15

every suffix of w represents a negative or identity element in F (X)
and hence D(X). Then by Theorem 1 w represents the identity in
D(X).

Theorem 4 (ii) ⇒ (iii) Let w be a word representing the identity
in F (X) and suppose that every prefix of w is a positive or identity
element in F (X), then the only minimum of w is the identity of F (X).

Proof. First we show that the identity is indeed a minimum of w.
Since w represents the identity, it has a prefix representing the identity,
namely w. Now let p and s be any words such that w = ps. Suppose
that p represents the identity. We must show that s = ε or s = xs′ for
some s′. In the case where w = p, we have that s = ε. Now assume s
is non-empty. We can then write s = xs′ where x ∈ (X ∪X−1). Now
we have w = pxs′ and so px represents a positive or identity element.
In the case where px is positive we have that since p represents the
identity we have that px represents x which is positive so that x is a
positive generator. Otherwise if px represents the identity we would
have that x represents the identity which is not true so this case is not
possible.

Now we prove that the identity is the only minimum of w. Let u
be a non-identity minimum of w. Then w has a prefix p representing
u and every prefix of w representing u is not immediately followed by
a negative generator. Write w = ps for some s. By lemma 16 we have
that every suffix of w represents a negative or identity element so that
s represents a negative or identity element. We also have p represents
a positive or identity element. Clearly p cannot represent the identity
as this would contradict the fact that u does not represent the identity.
Thus we have two cases.

Case: p is positive and s is negative.

In this case since s is negative it has some prefix ex−1 for some
x ∈ X where e represents the identity. Therefore write w =
pex−1s′ for some s′. Now since u is a minimum of w and pe is a
prefix representing u, this prefix cannot be followed by a negative
generator contradicting the fact that pe is followed by x−1.

Case: p is positive and s represents the identity.

In this case we have that w = ps represents p which must rep-
resent the identity since w represents the identity contradicting
the fact that p is positive.

16

4.3 Lemma 15

We were not able to verify Lemma 15 as is, but we provide a sufficient
condition in the code for Lemma 15 to hold. To make up for this, we
provide an informal proof of the sufficient condition.6

Lemma 17 Let w be a word representing the identity in D(X) and
suppose w = uxv where u, v ∈ (X ∪ X−1)∗ and x ∈ X. Then v has
prefix ex−1 where e represents the identity in D(X).

Proof. We must have that the reduction process sends each x to some
given occurrence of x−1 by deleting the letters between them. This
given occurrence must appear after x since x−1x is irreducible inD(X).
The product of the letters deleted must be some factor representing
the identity, so set e equal to this product and the claim follows.

We are now ready to prove Lemma 15.

Lemma 18 Let uv be a word representing the identity in D(X#).
Then there exists s, t ∈ X# such that v = ts and

(i) t = ε or t begins with a negative generator; and

(ii) u#s#−1t also represents the identity in D(X#).

Proof. Since uv represents the identity in D(X#), we have that every
prefix of uv represents a positive or identity element in D(X#). Since
u is a prefix of uv, it follows that u is positive or represents the identity.
If u represents the identity, then v represents the identity and the claim
follows by setting s = v and t = ε. Otherwise u is positive and hence
we can write u as a product u′ of positive generators, so that u′ and
u are equal in D(X#). It follows we can write u′ = wx and since
wxv represents the identity, we may use lemma 17 to write v = ex−1v′

where e represents the identity. Now set s = e and t = x−1v′, so we
have wx#e#−1x−1v′ represents the identity as required.

4.4 Proposition 16

We have that the following are equivalent,

(i) The word w represents the identity in D(X).

(ii) The word w admits a permissible padding that represents the
identity in D(X#).

(iii) The word w admits a permissible padding that represents the
identity in F (X#).

6The proof of Lemma 15 is formally verified and present in the code, it simply rests on
an assumption for which we have no formal proof.

17

Theorem 5 (i) ⇒ (ii) Suppose w represents the identity in D(X),
then w admits a permissible padding which represents the identity in
D(X#).

Proof. We proceed by induction on the rewrite relation. In the case
where w = ε, then ε is a permissible padding of itself and clearly
represents the identity in D(X#).

Now suppose that w ⇒ w′ and w′ ⇒∗ ε. Then there exists words
u, v and a letter x ∈ X such that w = uxx−1v and w′ = uv. The in-
duction hypothesis tells us that uv admits a permissible padding repre-
senting the identity in D(X#). Therefore there exists a semi-padding
u′ of u and a permissible padding v′ of v such that u′v′ represents the
identity in D(X#). It then follows by lemma 18 that there exists s, t
such that v′ = st and t = ε or t begins with a negative generator and
u′#s#−1t also represents that identity in D(X#). If t = ε then we
have v′ = s and u′#s# represents the identity. We may pad uxx−1v
as

u′x##−1x−1#s#−1.

We have that u′ is a semi-padding of u and x##−1x−1# is a semi-
padding of xx−1 and so u′x##−1x# is a semi-padding of uxx−1 so
that u′x##−1x#s is a permissible padding of uxx−1v and we may
append #−1 on the end of a permissible padding as many times as we
want and the result is still a permissible padding of uxx−1v so that
u′x##−1x−1#s#−1 is a permissible padding of uxx−1v representing
the identity. To see this note that u′x##−1x−1#s#−1 reduces to
u′#s#−1 which we know represents the identity.

Otherwise if t begins with a negative generator then we have that
u#s#−1t represents the identity. We may pad uxx−1v as

u′x##−1x−1#s#−1t.

Since t begins with a negative generator we have that s#−1t is also a
permissible padding of v so that u′x##−1x−1#s#−1t is a permissible
padding representing the identity in D(X#).

Note: The proof of (ii) ⇒ (iii) and (iii) ⇒ (i) was formalized ex-
actly as Kambites wrote it and so there is no need to repeat it here.

Concluding Remarks We would like to note that the vast ma-
jority of all statements formalized had a constructive proof (which
therefore has interesting computational interpretations as programs).
As the formalization of M -automata was done early on in this project,
there is much room for redesign.

In particular it seems that it would be more useful for lean if
our construction M -automata were designed in such a way that would

18

allow for computation. That is, as opposed to using a relation, we
would write a program that executes the steps that an M -automaton
would take. This way, we would not have to prove the decidability of
membership of the language accepted by a given M -automaton (when
the underlying monoid type has decidable equality). Instead we would
get decidability of membership for “free” so to speak.

Clearly more work can be done in formally verifying Lemma 15
and implication (iii) ⇒ (ii) of Proposition 14. One thing we would
like to note is that the restriction to polycyclic monoids/free groups of
countable rank may be unnecessary. This restriction was not used in
the formalization, however until every statement is fully formalized we
cannot be certain of this. Indeed the theorem may hold for polycyclic
monoids/free groups of uncountable rank.

5 References

[1] Kambites, M., 2009. Formal Languages and Groups as Memory.
Communications in Algebra, 37(1), pp.193-208.
[2] Greibach, S., 1978. Remarks on blind and partially blind one-way
multicounter machines. Theoretical Computer Science, 7(3), pp.311-
324.
[3] Leanprover-community.github.io. 2022. Mathematics in mathlib.
[online] Available at: <https://leanprover-community.github.io/
mathlib-overview.html> [Accessed 13 May 2022].
[4] Lawson, M., 1999. Inverse semigroups. Singapore: World Scientific,
p.285.

19

