Science and Engineering Foundation Programme Mid-Semester Module Assessment

SEF001 Mathematics 1

Wednesday 9 November 2016, 1pm

FULL NAME:		
STUDENT ID:		
TUTOR GROUP:		

Instructions:

DO NOT TURN OVER THE SCRIPT until the test has started.

Make sure you read all questions carefully.

CALCULATORS:

Only Casio fx-82, fx-83 and fx-85 are allowed (+ extensions like ES, GT, GT plus) .

For marking purposes only:

Question	Marks
1	
2	
3	
4	
5	
TOTAL :	

1. (a) Simplify:

$$\frac{a^4 \times a^{-2}}{(a^{-1})^3} \times \sqrt{\frac{1}{a^3}}$$

(b) Solve the following equation for *x*:

$$2 \times 3^x = 1 - 3^{2x}$$

Give any solutions in their exact form as well as rounded to 3 decimal places.

2. Using long division write $\frac{x^3 + 4x^2 - 7x + 6}{x + 4}$ in the form $q(x) + \frac{r(x)}{q(x)}$

- 3. (a) Find the perpendicular bisector of P = (-2, 1) and Q = (4, 3).
 - (b) A circle has its centre at P and passes through Q. Write down the equation of the circle in
 - i. Cartesian coordinates (x, y)
 - ii. Parametric form using the angle $\boldsymbol{\theta}$

4. Let $f(x) = x^2 - 4x + 7$.

- (a) Write f(x) in the form $(x + a)^2 + c$ and sketch its graph.
- (b) Choose the largest possible domain and range such that f(x) is invertible.
- (c) Find the inverse function $f^{-1}(x)$ of f(x), using the above domain and range.
- (d) Determine whether $g(x) = \frac{4x}{x^2 + 2}$ is odd, even or neither.

