Chapter 1

Powers and Logarithms

1.1 Powers or Indices

If $a \in \mathbb{R}$, i.e. a is a real number, and n is a positive integer 1, 2, 3, ..., i.e. $n \in \mathbb{N}$, then $\mathbf{a}^{\mathbf{n}}$ is a short-hand notation for **multiplying a by itself n times**:

$$a^n = \overbrace{a \times \ldots \times a}^{n \text{ times}} . \tag{1.1}$$

The number a is called the **base** and the number n is referred to as the **power**, **index** or **exponent**. The operation of raising a number (base) to a power is called **exponentiation**.

For any base a (including zero) and any values of m and n the following hold:

Rules for powers				
Rule 1:	$a^1 = a$,		(1.2)	
Rule 2:	$a^0 = 1,$		(1.3)	
Rule 3:	$a^m \times a^n = a^{m+n},$		(1.4)	
Rule 4:	$(a^m)^n=a^{mn},$		(1.5)	
Rule 5:	$a^{-1} = \frac{1}{a}$	$(a \neq 0)$	(1.6)	
Rule 6:	$a^{-n} = \frac{1}{a^n}$	$(a \neq 0)$	(1.7)	
Rule 7:	$a^{1/n} = \sqrt[n]{a}$	$(n\in\mathbb{N},a>0)$	(1.8)	
Rule 8:	$a^{m/n} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$	$(n\in\mathbb{N},a>0)$	(1.9)	
Rule 9:	$(ab)^n = a^n b^n$		(1.10)	

Remarks:

- 1) Rules 1, 2, 5 and 7 are in fact definitions so that the rules of powers work nicely.
- 2) Observe that a is typically given in these expressions, while m and n take different values.

3) Rules 7 and 8 may fail when a < 0. $\sqrt{-1}$ is not defined in \mathbb{R} , while $\sqrt[3]{-1} = -1$.

Let's take a closer look at Rules 3 and 4 when m and n are positive integer 1, 2, 3, . . . :

$$a^m \times a^n = \underbrace{a \times \ldots \times a}_{m \text{ times}} \times \underbrace{a \times \ldots \times a}_{n \text{ times}} = \underbrace{a \times \ldots \times a}_{m+n \text{ times}}$$

and

$$(a^m)^n = \overbrace{a \times \ldots \times a}^{n \text{ times}} \times \ldots \times \overbrace{a \times \ldots \times a}^{m \text{ times}} = \underbrace{a \times \ldots \times a}^{m \times n \text{ times}}.$$

While we have demonstrated how Rules 3 and 4 work when m and n take positive integer values we can in fact substitute any fractional or real values into both rules. The same is true for Rule 6, while for Rules 7 and 8 we will only use integer values for m and n.

While these worked examples may appear trivial they are good practice the rules of powers.

Worked Example 1.1. Using the rules for power show that

- 1. $a \times \frac{1}{a} = 1$
- 2. $a^n \times \frac{1}{a^n} = 1$
- $3. \left(\sqrt[n]{a}\right)^n = a$
- $4. \left(\sqrt[n]{a^m}\right)^n = a^m$

Common mistakes

You need to remember also that, in general,

$$a^{m} + a^{n} \neq a^{m+n}$$

$$(a+b)^{n} \neq a^{n} + b^{n}$$

$$a^{(m^{n})} \neq (a^{m})^{n}$$

$$a^{m} + a^{n} \neq a^{m+n}$$
 e.g. $3^{1} + 3^{1} = 3 + 3 = 6 \neq 3^{1+1} = 3^{2} = 9$
 $+ b)^{n} \neq a^{n} + b^{n}$ e.g. $(3 + 4)^{2} = 7^{2} = 49 \neq 3^{2} + 4^{2} = 25$
 $a^{(m^{n})} \neq (a^{m})^{n}$ e.g. $2^{(3^{2})} = 2^{9} = 512 \neq (2^{3})^{2} = 8^{2} = 64$.

Worked Example 1.2. Without using a calculator find

$$i) 2^6,$$

$$ii) 8^{2/3}$$
,

i)
$$2^6$$
, *ii*) $8^{2/3}$, *iii*) $\sqrt[3]{1,000,000}$, *iv*) $(0.2)^{-2}$

$$iv) (0.2)^{-2}$$

Worked Example 1.3. Simplify

$$\frac{\sqrt[7]{a^{22}}}{\left(a^2a^3\sqrt{a}\right)^4}.$$

State the rules of powers that you are using at each step.

Solution : We simplify bit by bit:

Numerator:

Denominator:

Overall fraction:

Worked Example 1.4. Calculate the value of

$$\frac{\sqrt[4]{10^{17}}}{\left(10^2\right)^2} \times 10^{\frac{3}{4}}$$

Show your work and state the rules you use.

Solution : Again we simplify bit by bit:

Numerator:

Denominator:

Overall expression:

Observe that expressions may contain **different bases**, e.g. a^mb^n . In these cases you **can not apply the rules of powers** until you have transformed all terms to have the same common base using Rule 4. Typically we change to a smaller base.

Example: $9^3 = (3^2)^3 = 3^6$ by Rule 4; and $1000^4 = (10^3)^4 = 10^{12}$ by Rule 4.

Worked Example 1.5. Change 4^7 and 32^2 to the base 2 and hence find $\frac{4^7}{32^2}$.

Solution:

Worked Example 1.6. Show that

$$(100^6)^{12} \times [10^{-8} \times (0.1)^6]^{10} = 10000$$

Hint: Write everything in powers of 10.

Solution: Note that a calculator can not help you here (you can try it to see what happens).

First term:

Second term:

Overall expression:

1.2 Exponentials

A common mathematical application for powers are **polynomials** such as $x^7 + 3x^2$. The emphasis lies on the base being a variable, here x, while the power/exponent is fixed, here 7 respectively 2. We will see more on this in later chapters.

However for **exponentials** we view the base as fixed and the exponent as the variable. Fortunately calculations with exponentials follow the rules of powers discussed

Worked Example 1.7. Express $\frac{1}{3^{-4x}}$ in the form a^x , for a suitable number a.

Solution:

Applications of exponentials:

In **biology and ecology** exponentials are used to model unconstrained growth of bacteria. After a fixed unit time, say 1 hour, a cell splits into two new cells. Hence every hour the total number of bacteria doubles. Thus after T hours there are 2^T -times as many bacteria.

In **computer science** Moore's law (See, e.g. on wikipedia.org under "Moore's law") is the observation that the density of transistors in an integrated circuit doubles roughly every two years. Hence in y years the transistor density increases by $2^{(y/2)}$, and in particular it grows by a factor of $\sqrt{2}$ every year.

1.3 Logarithms

In the example on bacterial growth we might ask when are there 8 times as many bacteria as at the start. In other words we are interested in the time T such that $2^T = P$, where P = 8.

Worked Example 1.8. i) Find T by recognition such that $2^T = P$, where P = 8 or P = 64 or P = 1024.

Remark: The underlying approach of solving exponential problems by *recognition* lies the important idea of *comparing of exponents*.

Suppose in the following Δ and \square are expressions in terms of quantities that we are interested in. Suppose we are asked to solve the equation

$$a^{\Delta} = a^{\square} \tag{1.11}$$

Then the method of *comparing of exponents* states that

$$\Delta = \square \tag{1.12}$$

must be true, i.e. the exponents must agree.

Thus we are able to solve our original equation (1.11) by solving the equation (1.12) instead.

Worked Example 1.9. Find *x* by recognition such that

a)
$$7^x = 49$$
; b) $3^x = 81$; c) $10^x = 100,00$; d) $5^x = 0.2$; e) $2^x = -8$

Solution : a) $49 = 7 \times 7 = 7^2$ so $7^x = 7^2$ gives x = 2

Remark: As we have just shown there are problems that we can solve without a calculator just using recognition. We can equally argue that some problems can not have a solution.

The main question that we are trying to answer above is:

Given real numbers a and c, to which power, say x, do we need to raise a to get c?

In other words which number x solves the equation $a^x = c$?

Above we solved this problem by recognition, however most times that is not possible for us. In order to invert the operation "raising a to the power of" we apply the operation **logarithm to base** a which is denoted by \log_a .

Logarithms to the base *a*

The equation $a^x = c$ is equivalent to the equation $x = \log_a c$.

Worked Example 1.10. Express the following exponential equations in terms of logarithms

a)
$$7^x = 49$$
; b) $3^x = 81$; c) $10^x = 10000$; d) $5^x = 0.2$; e) $2^x = -8$

Solution:

The rules for powers and exponentials can be translated directly into logarithms:

Rules for logarithms				
Rule 1:	$\log_a a = 1$		(1.13)	
Rule 2:	$\log_a 1 = 0$	$(a \neq 1)$	(1.14)	
Rule 3:	$\log_a(xy) = \log_a x + \log_a y$		(1.15)	
Rule 4:	$\log_a(x^y) = y \log_a x$		(1.16)	
Rule 5:	$\log_a \frac{1}{a} = -1$		(1.17)	
Rule 6:	$\log_a \frac{1}{a^n} = -n$		(1.18)	
Rule 7:	$\log_a \sqrt[n]{a} = \frac{1}{n}$ $\log_a \sqrt[n]{a^m} = \frac{m}{n}$	$(n \in \mathbb{N})$	(1.19)	
Rule 8:	$\log_a \sqrt[n]{a^m} = \frac{m}{n}$	$(n \in \mathbb{N})$	(1.20)	

The most common logarithms have the base a = 10 and a = e = 2.71828... In order to solve logarithms to another base a we can change the base using the following identity. Suppose we want to express \log_b with base b in terms of \log_a with base a

Rule of change of base for logarithms
$$\log_b c = \frac{\log_a c}{\log_a b}$$

Remarks:

- 1. Both log terms on the right hand side use base a.
- 2. On both sides c is in the higher position and b is in the lower position.

In order to remember and understand the rule it helps to look at its derivation:

Worked Example 1.11. [non-examinable but interesting!]

Derive the rule for the change of base.

Worked Example 1.12. Solve $4^x = 64$ using base a = 4, a = 2 and a = e.

Worked Example 1.13. Guesstimate the solution of $7^x = 50$ then use a calculator.

Solution:

Worked Example 1.14. Simplify $\log_3 x + \log_9 \left(\frac{1}{x}\right) + \log_{\sqrt{3}} x$ using a base a = 3.

1.4 Solving equations with exponentials and logarithms

Worked Example 1.15. Given that $\ln a = 2$ solve $a^x = e^6$ for x.

Solution:

Worked Example 1.16. Find x such that $\log_4(2^{9x+4}) = 4$.

Solution:

1. Use the rules of logarithms

2. Change the base to a = 2

We will consider two types of equations with exponentials:

Type 1) Equations containing no sums on either side

Method:

- 1. Change all terms to a suitable common base, typically the smallest whole number.
- 2. Combine the terms on either side into a single power.
- 3. Compare the exponents, respectively the logarithms with respect to the common base.
- 4. Solve the resulting equation in x.
- 5. Check your solution solves the original equation.

Worked Example 1.17. Solve $2^{2x} \times 8^{x+1} = 4^{3x}$ for *x*.

Check your solution does indeed solve the equation.

Solution:

Worked Example 1.18. Show $2^{3x} \times 8^{x+1} = 4^{3x}$ has no solution for x.

Type 2) Equations containing sums of exponentials on one side or both

Method:

- 1. Change all terms to a suitable common base *a*, typically the smallest whole number.
- 2. Use the substitution $u = a^x$.
- 3. Solve the resulting equation, typically a polynomial in u.
- 4. List the solutions u_i .
- 5. If $u_i > 0$ then $x_i = \log_a(u_i)$, while $u_i \le 0$ gives no solution for x.
- 6. Check your solution solves the original equation.

Worked Example 1.19. Solve $e^{2x} + e^x = 2$ for x. Check your final answer.

Worked Example 1.20. Solve $2^{2x} + 8^{x+1} = 4^{2x}$ for *x*.

Worked Example 1.21. Solve the following system of simultaneous equations.

$$2 \ln x = \ln y + \ln 3$$
$$e^x e^y = e.$$

What restrictions are there on x and y? Explain.

1.5 Applications of logarithms in science - non examinable

1) The Carbon-14 dating method

This method measures the percentage of C^{14} isotopes left in bone samples to date them. It uses the fact that the carbon isotope C^{14} has a half life of 5730 years, in other words after 5730 years the amount of C^{14} in a sample has shrunk to 50% of the initial amount.

Let t be the age of the sample measured in years, while τ measures the age in half lives (HL). Hence we have $\tau = 5730 \, t$. In particular:

$$\tau = 1$$
HL, $t = 5730yrs$: 50% of C¹⁴ left.
 $\tau = 2$ HL, $t = 11460yrs$: 25% of C¹⁴ left.
etc.

The percentage P of C^{14} left after τ HL is given by:

$$P = (0.5)^{\tau}$$
.

Hence

$$\tau = \log_{0.5} P = \frac{\log P}{\log 0.5} = \frac{\ln P}{\ln 0.5}$$

Worked Example 1.22. A bone sample is found to have 60% of C^{14} left in it.

- Guesstimate the age of the sample.
- Calculate the exact age of the bone sample.

2) pH-values and the Nernst equation

The pH-value is related to the concentration of the positive hydrogen ions H^+ present in a solution. If $[H^+]$ denotes the concentration of H^+ then the **pH-value** is defined by

$$pH = -\log[H^+].$$

The pH-value is typically measured using electrodes. Let E measure the electrode potential, R be the gas constant, T the temperature in kelvin and E the Faraday constant. Moreover let E_0 measure the standard electrode potential. Then the **Nernst equation** relates the electrode potential E and E and E and E and E are concentration of hydrogen ions by

$$E = E_0 + \frac{RT}{2F} \ln([H^+]^2). \tag{1.21}$$

Worked Example 1.23. Rearrange the Nernst equation to get an expression for the pH-value in terms of E, E0, R0, R1 and R2.

Learning outcomes

- Knowing and applying the rules for powers and exponentials.
- Simplifying expressions involving powers with the same basis.
- Simplifying expressions involving powers with different bases.
- Understanding the relationship between exponential and logarithmic expressions.
- Transforming exponential expressions into logarithmic ones, and vice versa.
- Knowing and applying the rules for logarithms.
- Knowing and applying the rules for the change of base for logarithms.
- Knowing and applying the rules for logarithms.
- Simplifying logarithmic expressions.
- Understanding and applying the methods for solving different kinds of problems involving exponentials or logarithms.