MTH6107 Chaos & Fractals

Solutions 7

Exercise 1. Let $F_k = \Phi^k([0,1]^2)$, where $\Phi(A) = \bigcup_{i=1}^5 \phi_i(A)$ for subsets $A \subset \mathbb{R}^2$, and where the five maps $\phi_1, \phi_2, \phi_3, \phi_4, \phi_5$ are defined by $\phi_i(x,y) = (x_i,y_i) + (x/3,y/3)$, where $(x_1,y_1) = (0,0)$, $(x_2,y_2) = (2/3,0)$, $(x_3,y_3) = (1/3,1/3)$, $(x_4,y_4) = (0,2/3)$, $(x_5,y_5) = (2/3,2/3)$.

- (a) Determine the set F_1 .
- (b) If F_k is expressed as a union of N_k closed squares, where the intersection of any two squares is either a singleton set or the empty set, compute the number N_k .
- (c) What is the common side length of each of the N_k squares in (b) above?
- (d) What is the box dimension of $F = \bigcap_{k=0}^{\infty} F_k$?
- (a) The set F_1 is the union of 5 squares, each of side length 1/3. More precisely, if $S = [0, 1/3] \times [0, 1/3]$, and we define $S_i = (x_i, y_i) + S$ for $1 \le i \le 5$, then $F_1 = \bigcup_{i=1}^5 S_i$. More explicitly, the squares S_1, \ldots, S_5 can be written as

$$S_1 = [0, 1/3] \times [0, 1/3], \ S_2 = [2/3, 1] \times [0, 1/3], \ S_3 = [1/3, 2/3] \times [1/3, 2/3],$$

 $S_4 = [0, 1/3] \times [2/3, 1], \ S_5 = [2/3, 1] \times [2/3, 1].$

- (b) $N_k = 5^k$.
- (c) The common side length is $1/3^k$.
- (d) The box dimension is $\log 5/\log 3$.

This can be seen by using the box dimension formula $D(F) = \log \beta / \log(1/\alpha)$, where α is the scaling factor for the side length of boxes, and β is the scaling factor for number of boxes.

Alternatively, if $\epsilon_k=1/3^k$ denotes the common side length then we can compute that

$$D(F) = \lim_{k \to \infty} \frac{\log N_k}{\log(1/\epsilon_k)} = \lim_{k \to \infty} \frac{\log 5^k}{\log(1/(1/3^k))} = \lim_{k \to \infty} \frac{k \log 5}{k \log 3} = \lim_{k \to \infty} \frac{\log 5}{\log 3} = \frac{\log 5}{\log 3}.$$

Exercise 2. Let $C_0 = [0,1]$. In the standard construction of the middle third Cantor set $C = \bigcap_{k=0}^{\infty} C_k$, describe briefly how the sets C_k are defined, and explicitly write down the sets C_1 and C_2 . If C_k is expressed as a disjoint union of N_k closed intervals, compute the number N_k , and determine the common length of each of the N_k closed intervals. Use this to show that, assuming the box dimension of the middle third Cantor set C exists, then it must equal $\log 2/\log 3$

The set C_{k-1} is a disjoint union $\cup_i I_i$ of closed intervals. If from each of these closed intervals I_i we remove the 'open middle third', we are left with a pair of closed intervals I_i^- and I_i^+ , each of length a third the length of I. The union $\cup_i (I_i^- \cup I_i^+)$ of these intervals is then defined to be the set C_k .

 $C_1 = [0, 1/3] \cup [2/3, 1]$, and $C_2 = [0, 1/9] \cup [2/9, 1/3] \cup [2/3, 7/9] \cup [8/9, 1]$.

 $N_k=2^k$ because $N_0=1$ and the recursive procedure doubles the number of intervals at each step.

The length of each interval in C_k is $1/3^k$, because the length of the closed intervals decreases by a factor of 3 at each step, and the length of $C_0 = [0, 1]$ is 1.

If $\varepsilon_k = 1/3^k$ then $N(\varepsilon_k) = 2^k$, and so the box dimension equals

$$\lim_{k \to \infty} \frac{\log N(\varepsilon_k)}{-\log \varepsilon_k} = \lim_{k \to \infty} \frac{k \log 2}{k \log 3} = \frac{\log 2}{\log 3}.$$

Exercise 3. If C is the middle-third Cantor set, what is the box dimension of the planar subset $C \times [0,1] = \{(x,y) : x \in C, y \in [0,1]\}$?

The set $C \times [0,1]$ has box dimension equal to $\frac{\log 2}{\log 3} + 1$ (note that this equals the sum of the box dimension of C and the box dimension of [0,1]).

One way to see this is to note that $[0,1]\times C$ is equal to $\bigcap_{k=0}^\infty \Phi^k([0,1]^2)$, where $\Phi(A)=\bigcup_{i=1}^6\phi_i(A)$, and the maps ϕ_i all shrink lengths by a factor of 1/3, so that the 6 images of the unit square are such that three of them are stacked on top of the interval [0,1/3] and the other three are stacked on top of the interval [2/3,1]. More specifically, we can define $\phi_1(x,y)=(x/3,y/3)$, $\phi_2(x,y)=(x/3,y/3+1/3)$, $\phi_3(x,y)=(x/3,y/3+2/3)$, $\phi_4(x,y)=(x/3+2/3,y/3)$, $\phi_5(x,y)=(x/3+2/3,y/3+1/3)$, $\phi_6(x,y)=(x/3+2/3,y/3+2/3)$.

Since the side length scaling factor is $\alpha=1/3$, and number of boxes scaling factor is $\beta=6$, the box dimension is equal to

$$\frac{\log \beta}{\log(1/\alpha)} = \frac{\log 6}{\log 3} = \frac{\log 3 + \log 2}{\log 3} = 1 + \frac{\log 2}{\log 3}.$$

Exercise 4. Let ϕ_1, ϕ_2 be the iterated function system defined by the two maps $\phi_1(x) = x/10$ and $\phi_2(x) = (x+3)/10$, with $\Phi(A) := \phi_1(A) \cup \phi_2(A)$, and let C_k denote $\Phi^k([0,1])$ for $k \geq 0$. Write down the sets C_1 and C_2 . If C_k is expressed as a disjoint union of N_k closed intervals, compute the number N_k , and determine the common length of each of the N_k closed intervals whose disjoint union equals C_k . Show that if the box dimension of $C = \bigcap_{k=0}^{\infty} C_k$ exists then it must equal $\log 2/\log 10$.

$$C_1 = [0,1/10] \cup [3/10,4/10]$$
, and
$$C_2 = [0,1/100] \cup [3/100,4/100] \cup [3/10,31/100] \cup [33/100,34/100].$$

 $N_k=2^k$ because $N_0=1$ and the recursive procedure doubles the number of intervals at each step.

The length of each interval is $1/10^k$, because the length of the closed intervals decreases by a factor of 10 at each step, and the length of $C_0 = [0, 1]$ is 1.

If $\varepsilon_k=1/10^k$ then $N(\varepsilon_k)=2^k$, and so the box dimension equals

$$\lim_{k \to \infty} \frac{\log N(\varepsilon_k)}{-\log \varepsilon_k} = \lim_{k \to \infty} \frac{k \log 2}{k \log 10} = \frac{\log 2}{\log 10}.$$

Exercise 5. Let ϕ_1, ϕ_2 be the iterated function system defined by the two maps $\phi_1(x) = x/10$ and $\phi_2(x) = (x+9)/10$, with $\Phi(A) := \phi_1(A) \cup \phi_2(A)$, and let C_k denote $\Phi^k([0,1])$ for $k \geq 0$. If C_k is expressed as a disjoint union of N_k closed intervals, compute the number N_k , and determine the common length of each of the N_k closed intervals whose disjoint union equals C_k . Show that if the box dimension of $C = \bigcap_{k=0}^{\infty} C_k$ exists then it must equal $\log 2/\log 10$.

 $N_k=2^k$ because $N_0=1$ and the recursive procedure doubles the number of intervals at each step.

The length of each interval is $1/10^k$, because the length of the closed intervals decreases by a factor of 10 at each step, and the length of $C_0 = [0, 1]$ is 1.

If $\varepsilon_k = 1/10^k$ then $N(\varepsilon_k) = 2^k$, and so the box dimension equals

$$\lim_{k \to \infty} \frac{\log N(\varepsilon_k)}{-\log \varepsilon_k} = \lim_{k \to \infty} \frac{k \log 2}{k \log 10} = \frac{\log 2}{\log 10}.$$

Exercise 6. For C as in Exercise 5, give a description of the members of C in terms of the digits of their decimal expansion. If $f:C\to C$ is defined by $f(x)=10x\pmod 1$ then find a point $x\in C$ which has minimal period 2 under f.

 ${\cal C}$ consists of those numbers between 0 and 1 which have a decimal expansion whose digits all equal either 0 or 9.

There are two points of minimal period 2, namely

$$1/11 = 0.090909...$$
 and $10/11 = 0.909090...$

Exercise 7. Describe the construction of the *Sierpinski triangle* P, and show that if the box dimension of P exists then it must equal $\log 3/\log 2$

Begin with a solid equilateral triangle, then sub-divide it into 4 congruent equilateral triangles, then remove the central triangle, leaving 3 solid equilateral triangles. Repeat the above step with each of the remaining 3 triangles, and continue the process ad infinitum.

Assuming (without loss of generality) that the initial equilateral triangle has side length 1, we see that N(1/2)=3, and more generally $N(1/2^k)=3^k$, so existence of the box dimension D means that

$$D = \lim_{\varepsilon \to 0} \frac{\log N(\varepsilon)}{-\log \varepsilon} = \lim_{k \to \infty} \frac{\log N(1/2^k)}{-\log 2^{-k}} = \lim_{k \to \infty} \frac{\log 3^k}{k \log 2} = \frac{\log 3}{\log 2}.$$