MTH6107 Chaos & Fractals ## Exercises 7 **Exercise 1.** Let $F_k = \Phi^k([0,1]^2)$, where $\Phi(A) = \bigcup_{i=1}^5 \phi_i(A)$ for subsets $A \subset \mathbb{R}^2$, and where the five maps $\phi_1, \phi_2, \phi_3, \phi_4, \phi_5$ are defined by $\phi_i(x,y) = (x_i,y_i) + (x/3,y/3)$, where $(x_1,y_1) = (0,0)$, $(x_2,y_2) = (2/3,0)$, $(x_3,y_3) = (1/3,1/3)$, $(x_4,y_4) = (0,2/3)$, $(x_5,y_5) = (2/3,2/3)$. - (a) Determine the set F_1 . - (b) If F_k is expressed as a union of N_k closed squares, where the intersection of any two squares is either a singleton set or the empty set, compute the number N_k . - (c) What is the common side length of each of the N_k squares in (b) above? - (d) What is the box dimension of $F = \bigcap_{k=0}^{\infty} F_k$? **Exercise 2.** Let $C_0 = [0,1]$. In the standard construction of the middle third Cantor set $C = \bigcap_{k=0}^{\infty} C_k$, describe briefly how the sets C_k are defined, and explicitly write down the sets C_1 and C_2 . If C_k is expressed as a disjoint union of N_k closed intervals, compute the number N_k , and determine the common length of each of the N_k closed intervals. Use this to show that, assuming the box dimension of the middle third Cantor set C exists, then it must equal $\log 2/\log 3$ **Exercise 3.** If C is the middle-third Cantor set, what is the box dimension of the planar subset $C \times [0,1] = \{(x,y) : x \in C, y \in [0,1]\}$? **Exercise 4.** Let ϕ_1, ϕ_2 be the iterated function system defined by the two maps $\phi_1(x) = x/10$ and $\phi_2(x) = (x+3)/10$, with $\Phi(A) := \phi_1(A) \cup \phi_2(A)$, and let C_k denote $\Phi^k([0,1])$ for $k \geq 0$. Write down the sets C_1 and C_2 . If C_k is expressed as a disjoint union of N_k closed intervals, compute the number N_k , and determine the common length of each of the N_k closed intervals whose disjoint union equals C_k . Show that if the box dimension of $C = \bigcap_{k=0}^{\infty} C_k$ exists then it must equal $\log 2/\log 10$. **Exercise 5.** Let ϕ_1, ϕ_2 be the iterated function system defined by the two maps $\phi_1(x) = x/10$ and $\phi_2(x) = (x+9)/10$, with $\Phi(A) := \phi_1(A) \cup \phi_2(A)$, and let C_k denote $\Phi^k([0,1])$ for $k \geq 0$. If C_k is expressed as a disjoint union of N_k closed intervals, compute the number N_k , and determine the common length of each of the N_k closed intervals whose disjoint union equals C_k . Show that if the box dimension of $C = \bigcap_{k=0}^{\infty} C_k$ exists then it must equal $\log 2/\log 10$. **Exercise 6.** For C as in Exercise 5, give a description of the members of C in terms of the digits of their decimal expansion. If $f:C\to C$ is defined by $f(x)=10x\pmod 1$ then find a point $x\in C$ which has minimal period 2 under f. **Exercise 7.** Describe the construction of the *Sierpinski triangle* P, and show that if the box dimension of P exists then it must equal $\log 3/\log 2$