MTHG6107 Chaos & Fractals

Solutions 6

EXAM QUESTIONS: Exercises 1-5 below correspond to the various parts of
Question 4 on the January 2023 exam paper, and Exercise 6 corresponds to
Question 1 on the same exam paper.

Exercise 1. For the function f, : R — R defined by fi(z) = >, 2%+, give a formula
for the derivative fi(z).

The derivative is given by
9 9
file) = @i+ D% =1+ (2i+1)a*.
i=0 i=1
Exercise 2. Using properties of the derivative f{, or otherwise, show that the only
periodic point for f; is the fixed point at 0.

Since each 2% > 0 for all x € R, from the formula for f| we see that f{(x) >1 >0
for all x € R.

Clearly 0 is a fixed point.

To see that there are no other fixed points, note that the fixed point equation
fi(x) = z becomes 377 2?1 = 0, but 0 is the only solution to this because $"7_, 2%+
is a strictly monotone function of .

To see that there are no points of period strictly larger than 1 it suffices to note
that f; is a diffeomorphism, and is orientation-preserving since f{ > 0, and then cite
the result proved in lectures that orientation-preserving diffeomorphisms do not have
periodic points of period strictly larger than 1.

Exercise 3. For the function f; : R — R defined by

) 2(14x) forxz <0
fz(w)_{x—Z forx >0,

evaluate the set {n € N : f; has a point of least period n}, being careful to justify your
answer.

The map fs is continuous, and has an orbit of least period 3, namely {—2,2,0},
therefore by Sharkovskii's Theorem, {n € N : f, has a point of least period n} is the
whole of N.

Exercise 4. For the function f3: R — R defined by

{—2(14—35) for x <0

fal) = £/2-2  forz>0,

evaluate the set {n € N : f3 has a point of least period n}, being careful to justify your
answer.



We claim that {n € N : f3 has a point of least period n} = {1,2,4}.

To see this, note that the map f3 is continuous, and has an orbit of least pe-
riod 4, for example {—2,2,—1,0}, therefore by Sharkovskii's Theorem, {n € N :
f3 has a point of least period n} contains {1,2,4}. (Alternatively, computation shows
that —2/3 is the unique fixed point, and {—3/2,1} is the unique 2-cycle).

We now justify the assertion that if n ¢ {1,2,4} then f; does not have an n-cycle.

First note that if x < —2 then f3(x) > 2, and if y > 2 then f}(y) € [—2,2] for
some n € N, and if z € [-2,2] then f3(z) € [—2,2], therefore all periodic points of f3
belong to [—2,2].

First we claim that every point in

X :=[-2,2]\ ({—2,1} U (—1,0)) = [-2, —;) U (—g,—l] ul0,1) U (1,2]
has least period 4. To see this note that f5((1,2]) = (—3/2,—1], f3((—3/2,—1]) =
0,1), f3([0,1)) = [-2,-3/2), and f3([—2,—-3/2)) = (1,2], and if = € (1,2] then
f3(x) =x/2-2, fi(z) = -2(1+2/2-2)=2—=x, f3(z)=(2—12)/2—-2=—1—21/2,
fix)=-2(1-1-2/2) ==z.

Next we note that if z € (—1,0) is not the fixed point —2/3 then x is eventually
periodic: either fj'(x) € (1, 2] for some n € N so z is eventually periodic of least period
4, or f(x) = —3/2 for some n € N so x is eventually periodic of least period 2 (there
are countably many such points: ... —23/32 — —9/16 — —7/8 — —1/4 +— —3/2).

Therefore we have shown that there are no periodic points whose least period is not
equal to either 1, 2 or 4.

Exercise 5. Without using Sharkovskii's Theorem, show that every continuous function
f : R — R which has a periodic orbit must have a fixed point. [Hint: Use the Intermediate
Value Theorem.]

If f has a periodic orbit then either it is a fixed point, in which case there is nothing
to prove, or the smallest point £~ in the periodic orbit is distinct from the largest point
x in the periodic orbit. Now f(x~) lies in this periodic orbit, so f(z~) > x~, and
f(z™) lies in this periodic orbit, so f(z") < x*. Therefore the function g defined by
g(x) := f(x) — x is continuous, with g(x~) > 0 and g(z*) < 0, so by the Intermediate
Value Theorem there exists ¢ € (x~,2") with g(c) = 0, therefore ¢ is a fixed point of

f.

Exercise 6. Given an iterated function system defined by the maps ¢;(z) = (x4 1)/10
and ¢y(z) = (x +4)/10, define ®(A) = ¢1(A) U ¢o(A), and let C} denote ®*([0, 1])
for k > 0.

(a) Determine the sets C and Cs.

(b) If Cy, is expressed as a disjoint union of Ny closed intervals, compute the number
N;.

(c) What is the common length of each of the Nj closed intervals whose disjoint
union equals C}?
(d) Compute the box dimension of C' = N2, Cy, being careful to justify your answer.
(e) Compute the box dimension of D = M2, W*([0,1]), where ¥(A) = 1;(A) U
o(A), and Y (x) = (v + 1)/16, ¢o(z) = (= +4)/16.
(f) Describe a set £ whose box dimension is equal to 4/5, being careful to justify
your answer.
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(b) N, = 2% because Ny = 1 and the recursive procedure doubles the number of

intervals at each step.

(c) The common length is 107, because the length of the closed intervals decreases
by a factor of 10 at each step, and the length of Cy = [0, 1] is 1.

(d) If e, = 1/10% then N(g;) = 2, so the box dimension equals

. log N(ex) . klog?2 log 2
lim —————~ = lim = .
koo —loger  k—oo klog10  log 10

(e) By analogy with the above calculation, at each step of the recursive procedure
the number of intervals increases by a factor of 3 = 2, while the length of these intervals
decreases by a factor of & = 1/16, so the box dimension is equal to

log8  log2  log2  log2 1

log(1/a) logl16 log2* 4log2 4

(f) By analogy with the above calculation, it suffices to describe a recursive procedure
where at each step the number of intervals increases by a factor of 3 = 2* and the length
of these intervals decreases by a factor of o = 1/25, since in that case the box dimension
is equal to

log log2* 4log2 4
log(1/a)  log2®

5log2 5
Explicitly, we might define ¢;(x) = (z +2j — 1)/2° for 1 < j < 2%, then set

o(4) = [J 654,

and define £ = N ,®%([0, 1]).



