MTH6107 Chaos & Fractals ## Exercises 5 **EXAM QUESTION:** the questions below correspond to the various parts of Question 3 on the January 2023 exam paper For parameters $\lambda > 0$, define $f_{\lambda} : \mathbb{R} \to \mathbb{R}$ by $$f_{\lambda}(x) = \lambda x^2 (1 - x) .$$ **Exercise 1.** Show that there is a point $p \in \mathbb{R}$ which is a fixed point of f_{λ} for all $\lambda > 0$. Is p attracting or repelling? Justify your answer. **Exercise 2.** Determine the value $\lambda_1 > 0$ such that f_{λ} has precisely one fixed point if $\lambda \in (0, \lambda_1)$, and precisely 3 fixed points if $\lambda > \lambda_1$. Justify your answer. **Exercise 3.** For $\lambda>\lambda_1$, let $x_\lambda^-< x_\lambda^+$ denote the two fixed points of f_λ which are not equal to p. Determine explicit formulae for x_λ^- and x_λ^+ in terms of λ . **Exercise 4.** Show that x_{λ}^{-} is a repelling fixed point of f_{λ} for all $\lambda > \lambda_{1}$. **Exercise 5.** Determine the value $\lambda_2 > \lambda_1$ such that if $\lambda \in (\lambda_1, \lambda_2)$ then x_{λ}^+ is an attracting fixed point of f_{λ} , and if $\lambda > \lambda_2$ then x_{λ}^+ is a repelling fixed point of f_{λ} . Justify your answer. **Exercise 6.** Show that there exists $\lambda \in (5,6)$ such that 2/3 is a point of least period 2 for f_{λ} .