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The assembly of microbial communities within the gastrointestinal tract during
early life plays a critical role in immune, endocrine, metabolic, and other host
developmental pathways. Environmental insults during this period, such as
food insecurity and infections, can disrupt this optimal microbial succession,
which may contribute to lifelong and intergenerational deficits in growth and
development. Here, we review the human microbiome in the first 1000 days –

referring to the period from conception to 2 years of age – and using a
developmental model, we examine the role of early microbial succession in
growth and development. We propose that an ‘undernourished’ microbiome is
intergenerational, thereby perpetuating growth impairments into successive
generations. We also identify and discuss the intertwining host–microbe–envi-
ronment interactions occurring prenatally and during early infancy, which may
impair the trajectories of healthy growth and development, and explore their
potential as novel microbial targets for intervention.

Growth and Development: A Microbial Perspective
The first 1000 days – the period from conception to 2 years of age – represents a critical window of
early childhoodgrowth and development. Thisprenatalandearlypostnatalperiod isdefinedbyrapid
maturation of metabolic, endocrine, neural, and immune pathways, which strongly influence and
support child growth and development. These pathways develop in tandem and are highly interde-
pendent, with a complex program of assembly reliant on internal and external cues. When these
developmental pathways are challenged by adverse environmental insults, such as infection or
suboptimalfeeding,thetrajectoryofchildgrowthcanbeperturbed,leadingtomalnutrition,whichcan
manifest as overnutrition (overweight or obesity) or as undernutrition – stunting (see Glossary) or
wasting.Anemergingperspectiveofhumandevelopmentalbiology includesthetrillionsofmicrobes
(microbiota) and their genes (microbiome) that reside within the human body, and which assemble
and stabilize during the first 2 years of life [1]. Emerging evidence suggests that the colonization of
microbes inthehumanbodyduringearly lifeplaysacritical role in theestablishmentandmaturationof
developmentalpathways[2]andthatdisruptionofthisoptimalmicrobialsuccessionmaycontribute
to lifelong and intergenerational deficits in growth and development (Figure 1).

Here, we review the role of the human microbiota in healthy growth and development during the
first 1000 days. We focus on undernutrition, which remains an enormous public health
challenge: 155 million children are stunted (low height-for-age), and 52 million children are
wasted (low weight-for-height); global targets to end malnutrition in all its forms by 2030 are
unlikely to be achieved (https://sustainabledevelopment.un.org/sdg2). We identify and discuss
the intertwining host–microbe–environment interactions that occur prenatally and during early
infancy that may impair the trajectories of healthy growth and development, and we explore
their potential as novel microbial targets for intervention.

Highlights
Undernutrition is influenced by infections,
subclinical pathogen carriage and meta-
bolic impact of ‘dysbiotic’ commensal
gut microbial communities (gut micro-
biota) in infants during the first 1000 days.

Delayed or immature assembly of the
gut microbiota underlies severe acute
malnutrition in children.

The gut microbiota affects the soma-
totropic axis through regulation of IGF-
1 and growth hormone production,
thereby affecting growth.

There is emerging knowledge of the
influence of prenatal microbial commu-
nities on fetal and postnatal growth.

The gut microbiota plays an influential
role in inflammation and enteropathy,
which may be linked to growth faltering.

The first 1000 days provides a window
of opportunity for modulating the micro-
biota through interventions such as diet,
antibiotics, probiotics, prebiotics, or
fecal microbiota transplantation to pro-
mote healthy growth and development.
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Days 0–270: Pregnancy
During pregnancy, fetal growth and development (Box 1) are profoundly influenced by the in
utero environment and interactions at the fetal–maternal interface. Approximately 20% of
stunting has in utero origins, due to preterm birth, small-for-gestational age (SGA), or both
[3]. Growth deficits in utero have been associated with maternal and placental inflammation
and infection, suggesting a prenatal role of microbes in fetal growth [4]. Biogeographical
analysis of the maternal microbiota at varying body sites suggests that the microbiota
composition of pregnant women is distinct from that of nonpregnant women, and it changes
throughout pregnancy [5,6]. Hence the prenatal microbiota may play an important role in the
in utero environment that influences both the duration of pregnancy and the trajectory of fetal
growth.

The Maternal Microbiota
The vaginal microbiota plays a key role in colonizing the infant at birth during normal vaginal
delivery. However, emerging evidence also suggests that microbes in the vaginal tract may
interact with the developing fetus, thereby affecting prenatal growth and duration of pregnancy.
Vaginal infections, most commonly bacterial vaginosis, represent an important route of trans-
mission for pathogens to invade the in utero environment and stimulate the inflammatory
cascade associated with SGA and preterm birth [7]. However, characteristic patterns of the
overall vaginal microbiota, rather than individual pathogens, have also recently been associated
with reduced fetal growth. In urbanized cohorts from high-income countries, the vaginal
microbiota during pregnancy is typically dominated by one of four species of Lactobacillus
[7–9]. However, geographical differences appear to exist in the vaginal microbiota of pregnant
women. A recent study of 1107 women in rural Malawi reported that a diverse Lactobacillus-
deficient vaginal microbiota was most common in this setting [10]. Furthermore, this Lactoba-
cillus-deficient vaginal microbiota could be further divided into four distinct subtypes, one of
which was characterized by high abundances of Prevotella spp., Gemella spp., and Coryne-
bacterium spp. This specific subtype was associated with significantly reduced newborn
length-for-age Z-score (LAZ), which may have been partially driven by shorter duration of
pregnancy. Hence the maternal vaginal microbiota may play an important role in the prenatal
programming that influences growth.

Other ecological niches during pregnancy harbor communities of microbes that may influence
fetal growth and birth outcomes. Gut microbial translocation increases during pregnancy [11].
Indeed, maternal inflammatory bowel disease, which may be partially driven by gut dysbiosis,
is associated with preterm birth and low birth weight (LBW) [12]. Preterm birth in high-income
settings is also associated with reduced maternal gut microbiota diversity and lower
abundance of Bifidobacterium, Streptococcus, and Clostridium [13,14]. Several studies have
also observed close similarity between the maternal oral microbiota and the placental and
infant oral microbiota, suggesting that maternal–fetal microbial transmission may occur [15].
Intriguingly, maternal periodontal infection is associated with a disturbed oral microbiome and
has been associated with preterm birth and SGA in some studies, suggesting that the oral
cavity may act as a storehouse of microbes, which may ultimately interact with the developing
fetus [16–18]. The abundance of Actinomyces naeslundii in maternal saliva is negatively
associated, and Lactobacillus casei positively associated, with birth weight [19]. The inci-
dence of preterm birth and LBW is four to five times greater in certain low- and middle-income
countries (LMICs) compared with high-income settings, and periodontal disease is common
due to poor oral health [20–22]. Maternal periodontal infection therefore may induce a chronic
inflammatory environment in utero, leading to preterm birth and SGA or impaired infant
growth.

Glossary
Enteropathogens: microorganisms
found in the intestinal tract that
cause disease.
Enteropathy: disease associated
with the intestines.
Environmental enteric
dysfunction (EED): a chronic
condition of intestinal inflammation
and blunting of intestinal villi,
observed in children living in
impoverished settings.
Gut microbiota: the community of
microbes residing within the intestinal
tract.
Human milk oligosaccharides
(HMOs): complex sugars found in
human breast milk that are digested
by gut microbes.
Microbiome: the genes contained
within the microbiota.
Prebiotic: a substrate that is
selectively utilized by host
microorganisms conferring a health
benefit.
Probiotic: live microorganisms that,
when administered in adequate
amounts, confer a health benefit on
the host.
Ready-to-use therapeutic food
(RUTF): an energy-dense therapeutic
food comprised primarily of peanuts,
sugar, skimmed milk, oil, vitamins,
and minerals given to children with
severe acute malnutrition.
Severe acute malnutrition (SAM):
refers to a child with a weight-for-
height Z-score <–3, low mid-upper
arm circumference (MUAC
<11.5 cm), or the presence of
bilateral pitting oedema.
Small-for-gestational age (SGA):
refers to newborns weighing below
the tenth percentile for gestational
age.
Stunting: refers to a child with a
length-for-age Z-score <�2.
Succession: the process by which a
biological community or ecosystem
evolves over time.
Wasting: refers to a child with a
weight-for-height Z-score <�2.
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The Fetal Microbiota
Microbial invasion of the amniotic cavity is associated with preterm birth and other adverse birth
outcomes; however, the hypothesis of fetal exposure to a more complex placental microbiota in
healthy pregnancies remains under debate [15,23,24]. Similar to the vaginal microbiota, taxa
within the placental microbiota have been associated with both preterm birth and LBW,
suggesting that disruption of the normal microbial ecosystem in utero may affect growth
and duration of pregnancy [4,25]. A recent study of 1391 pregnant women in Malawi, the
largest of its kind, found that the presence of Sneathia sanguinengens and Peptostreptococcus
anaerobius in both vaginal and placental samples was associated with a lower newborn LAZ,
using culture-independent techniques [26]. S. sanguinengens, in addition to Phascolarcto-
bacterium succinatutens, and an unidentified Lachnospiraceae sp. were also inversely asso-
ciated with newborn head circumference for age Z-score.

The first stool of the infant (meconium) was previously thought to be sterile, yet numerous
studies have since reported a complex meconium microbiota signature [27,28]. Similar to the
placental and amniotic microbiota, 16S rDNA is more prevalent in the meconium of preterm
infants, suggesting a potential role of prenatal microbial exposure in growth and length of
gestation [29]. However, it is yet unclear whether this microbial presence is a cause or effect of
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Figure 1. Key Bacterial Taxa at Different Stages of 1000 Days That Contribute to Healthy versus Undernourished Growth. Current evidence suggests
that a number of bacterial signatures are associated with either undernutrition or healthy growth during the first 1000 days. During pregnancy, a vaginal microbiota with
low diversity and rich in Lactobacillus is associated with term birth and normal birth weight in high-income settings. Conversely, a more diverse vaginal microbiota, rich in
Prevotella spp., Gemella spp., and Corynebacterium, is associated with reduced newborn LAZ. Healthy growth is associated with greater Bifidobacterium longum and
Streptococcus thermophilus in the first 6 months of life, which are less prevalent in early-life undernutrition. Breastfeeding during this period is associated with greater
Bacteroides and Bifidobacterium. In later childhood, higher Akkermansia muciniphila, Methanobrevibacter smithii, Faecalibacterium prausnitzii, Lactobacillus, and
obligate anaerboes are associated with healthy growth, whilst Escherichia coli, Staphylococcus aureus and other species are associated with severe acute malnutrition.
A two-way interaction exists between an immature microbiome and the risk factors contributing to undernutrition, whereby diarrhea, nutrition, birth weight, and other
factors both influence and are influenced by the ‘undernourished’ microbiome. Image adapted from Servier Medical Art under a CC-BY license. HICs, high-income
countries; LMICs, low- and middle-income countries; HMO, human milk oligosaccharide; MAZ, microbiota-for-age Z-score; E. coli, Escherichia coli; S. aureus,
Staphylococcus aureus; D. longicatna, Dorea longicatna.
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preterm birth and impaired growth. Prenatal microbial exposure may also have long-term
influence on offspring immune development, which may impact growth trajectories postnatally.
Transient colonization of germ-free mice during pregnancy primes innate immune maturity in
their germ-free offspring, resulting in better protection against infection [30]. As infection plays
an important role in impaired growth, these results suggest that translocation of intestinal
microbial products from mother to fetus plays an essential role in the immune maturity and
plausibly the growth phenotypes of offspring after birth.

Days 270–450: Infancy (First 6 Months of Life)
During and immediately after birth, the newborn is exposed to complex microbial communities
in the external environment. Both the composition and function of the early infant microbiota is
primarily defined by birth mode, the maternal microbiota, antibiotic exposure, and early-life
feeding practices. As breastfeeding status profoundly influences infant growth and microbial
succession in early life, the milk–microbiota interaction may act as a primary target for
intervention through which faltering growth could be addressed.

The Preterm Microbiota
Microbial succession in the infant is profoundly influenced by gestational age. It is unclear,
however, whether the ‘immature’ preterm microbiota plays a causal role in reduced growth
and elevated risk of infectious and inflammatory disorders, such as sepsis and necrotizing
enterocolitis, or whether the preterm microbiota assembles as an adaptive response to such
stressors. Recent findings suggest that the preterm gut microbiota follows a three-phased
pattern of assembly, beginning with a facultative anaerobe-dominated composition (primarily
Bacilli; Phase 1) followed by expansion of obligate anaerobes and fermentation-based
metabolism dominated by Gammaproteobacteria (Phase 2) and Clostridia (Phase 3) [31].
Transition between phases is strongly influenced by postmenstrual age (PMA), nutrition, and
medication usage, and delayed transition to P3 is strongly associated with reduced weight-
for-age Z-score [32]. The observation that PMA strongly drives gut microbial transition in a
nonrandom manner suggests that developmental factors within the mucosal immune system
or intestinal metabolic environment may drive host-microbial homeostasis and mutualism.
The accumulation of Paneth cells in the small intestine in later PMA stages is essential for
antimicrobial peptide production, which may initiate host tolerance to a complex microbiota
[33]. In order to define microbiota ‘immaturity’ in these contexts, further examination of

Box 1. Microbial Influence on Neurodevelopment in Undernutrition

In addition to increased mortality, immune defects and later-life chronic disease risk, childhood undernutrition is also
associated with impaired neurodevelopment and subsequent cognition in later life. Some 75% of brain growth occurs
during the first 1000 days, after which synaptic proliferation and pruning occurs throughout adolescence and into the
third decade of life [104]. Child head circumference is a strong predictor of IQ and hence is employed as an additional
anthropometric measure alongside WHZ, LAZ, and MUAC to assess children’s nutritional status. The brain during
childhood has enormous metabolic capacity comprising 5–10% of total body mass and accounting for up to 50% of the
body’s basal metabolic energy rate and hence is particularly susceptible to the reduced energy intake associated with
undernutrition [104]. Due to the capacity of intestinal microbial communities to regulate nutritional energy harvest, the
gut microbiota may play a regulatory role in neurodevelopment during the first 1000 days. Germ-free mice display
impaired blood–brain barrier formation and myelination, suggesting an essential role for the microbiota in structural and
functional neurodevelopment [38,105]. Child cohort studies from LMICs have reported that diarrhea and enteric
infection are predictive of cognitive delay in later childhood [106,107]. Furthermore, EED biomarkers have also been
associated with neurodevelopment in LMICs. Plasma citrulline, a marker of gastrointestinal mucosal surface area, is
positively associated with higher gross motor development scores; however, novel inflammatory markers of EED also
demonstrated positive associations [108]. Hence the concurrent maturation of both the gut microbiota and central
nervous systems within the first 1000 days highlights the potential for gut microbiota interventions to optimise child
neurodevelopment in LMICs.
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neonatal microbiota assembly in both preterm and term infants is required in relation to
growth. However, these data have important implications for undernourished infants, whose
‘immature’ gut microbiota signatures and immunophenotypes are similar to those of preterm
infants, suggesting that optimization of early-life infant–microbe mutualism may help to
stimulate healthy growth and development.

Maturation of the Healthy Gut Microbiota
The microbiota of the healthy newborn closely matches the maternal stool, vaginal, or skin
microbiota, depending on delivery mode. The first colonizers of the infant gut microbiota are
typically facultative anaerobes, followed by the accumulation of obligate anaerobes, including
Bifidobacterium, Bacteroides, and Clostridium during the following 6 months [34–36]. The
diversity of the microbiota remains narrow in early infancy and is dominated by species
involved in human milk oligosaccharide (HMO) metabolism in breastfed infants. It has
been estimated that 25–30% of the infant bacterial microbiota originates from breast milk [37].
Succession of the early-life microbiota plays important roles in growth and maturation of the
endocrine, mucosal immune and central nervous systems [38–40]. Germ-free mice exhibit
significantly reduced weight and length prior to weaning compared with conventionally raised
animals [41]. This may be due to a number of factors, including reduced capacity for energy
harvest from the diet; however, it has also been theorized that microbiota-induced inter-
actions with insulin-like growth factor 1 (IGF-1), that remain uncharacterized, may also play a
role in early-life growth.

One of the challenges of the microbiome field, however, is in defining a ‘normal’ or ‘healthy’
microbiome, which can vary distinctly between gender and across different ages, geographical
regions, and medical contexts. In order to identify an ‘abnormal’ microbiome and its associ-
ations with adverse health outcomes, it is essential to contextualize the ‘healthy’ microbiome to
the appropriate setting. In the context of malnutrition in LMIC, a healthy microbiome is
considered in those of healthy WHZ (weight-for-height Z-score) or LAZ, yet may differ distinctly
to that of healthy growing infants in high-income settings. Hence, future developments in the
field will require careful consideration of environmental setting.

A landmark study developed an index to assess maturation of the gut microbiota in the first 2
years of life in the context of malnutrition, known as the microbiota-for-age Z-score (MAZ).
Using a reference cohort of children from Bangladesh with normal growth, the authors used a
machine-learning model to identify 25 bacterial taxa that were discriminant for age and healthy
growth [42]. The most age-discriminatory taxa in the first 6 months of infancy included several
Bifidobacterium and Streptococcus species, namely Bifidobacterium longum and Streptococ-
cus thermophilus. An identical model was applied to a Malawian cohort in which B. longum was
also the most discriminatory taxon for age [43].

The role of the early-life microbiome in growth may be dependent on both the composition and
function of the acquired microbiome. Metagenomic analysis of the infant microbiome suggests
that the functional potential of the microbiome may play essential roles in nutritional status in
addition to composition alone. For example, the inheritance of starch utilization genes and bile
acid metabolism genes, which may differ between individuals, likely plays an essential role in
nutrient absorption and hence growth in early life [9,44].

Breast Milk and Early Gut Microbiota Maturation
Microbial succession in preterm infants appears to be rescued by breastfeeding [45], suggest-
ing an essential role for breast milk in normal infant microbiota assembly. Furthermore, growth is
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also significantly greater in breast-fed compared to formula-fed preterm infants following
discharge from hospital [46]. Hence the impact of breastfeeding on infant microbiota assembly
may enhance growth and developmental pathways. Breast milk harbors a diverse microbiota,
which varies by maternal weight and delivery mode, and between populations, but is most
commonly characterized by Proteobacteria (primarily Pseudomonas), Staphylococcus, and
Streptococcus, and is compositionally distinct to the skin, oral, and gut microbiome [47,48].

The relationship between the breast-milk microbiota and infant growth has not been investi-
gated; however, recent studies support the essential role of HMOs in defining early-life growth
phenotypes. Genetic factors influence HMO production whereby carriers of an active fucosyl-
transferase 2 (FUT2) gene, known as secretors, produce more HMOs, both fucosylated and
sialylated structures [49]. Maternal secretor status hence influences infant microbiota compo-
sition, whereby Bifidobacterium is more abundant in infants of maternal secretors [50,51].
Maternal secretor status per se has not been associated with infant growth [52]; however,
individual HMOs have been associated with infant growth and anthropometry in both high-
income and low-income settings [53,54]. In a cohort of Gambian mothers and infants 30-
sialyllactose was positively associated whilst sialyllacto-N-neotetraose was negatively associ-
ated with weight-for-age Z-score (WAZ). Furthermore, difucosyllacto-N-hexaose a, lacto-N-
fucopentaose I and III were positively associated with LAZ.

Charbonneau et al. dissected the mechanisms by which HMOs interact with the infant micro-
biota to regulate growth [49]. Mothers of stunted infants in Malawi exhibited a significantly lower
abundance of HMOs in breast milk at 6 months, particularly sialylated HMOs, including
sialyllacto-N-tetraose b, which were the most growth-discriminatory. The undernutrition phe-
notypes were recapitulated in animals by colonizing germ-free mice and piglets with a con-
sortium of organisms cultured from the stool of a child with severe stunting, and feeding the
animals a suboptimal ‘Malawian diet’. However, supplementing the animals with bovine milk
oligosaccharides that were structurally similar to HMOs promoted weight gain, lean mass, and
bone volume in the animals. The growth effects were not observed in germ-free animals,
suggesting a microbiota-dependent effect. Hence, HMOs play a unique role in shaping the
infant microbiota in early life and mediating growth.

Days 450–1000: Childhood (6 Months to 2 Years)
Following breastfeeding, the introduction of solid foods initiates a rapid increase in the structural
and functional diversity of the infant microbiota, creating a mature, adult-like state. This mature
microbiome is dominated by species capable of degrading glycans, mucin, and complex
carbohydrates as well as the production of short-chain fatty acids. Concurrently, the period
from introduction of complementary foods (6 months of age) to 2 years of age represents a
crucial period for child growth, particularly linear growth [55]. In low-income settings, however,
food insecurity and environmental exposures in conditions of poor water, sanitation, and
hygiene pose a risk of exposure to pathogens (Box 2) and undernutrition in this period, which
may perturb the intertwining gut microbial and growth pathways (Figure 2).

Microbiota Maturity
Subramanian et al. carefully dissected this maturation process and its role in growth through
development of the MAZ in a cohort of infants from Bangladesh. Faecalibacterium prausnitzii,
Ruminococcus species and Dorea species (Dorea longicatna and Dorea formicigenerans) were
among the most age-discriminatory species from 6 to 24 months of age in healthy infants [42].
Children with severe acute malnutrition (SAM) (WHZ <�3) exhibited significantly lower
MAZ, indicating microbiota immaturity compared with healthy children.
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Germ-free animal studies have provided further evidence of the mechanisms by which micro-
biota immaturity contributes to undernutrition through interaction with the diet. A study of twin
pairs discordant for oedematous SAM in Malawi failed to identify a distinct microbiota signature
of edematous-SAM [56]. However, following transfer into germ-free mice, the ‘undernourished’
microbiota induced significant weight loss in the animals when administered in combination
with a nutrient-insufficient ‘Malawian diet’. Weight loss was associated with perturbed amino
acid, carbohydrate, and TCA cycle metabolism in both urinary and fecal metabolic profiles,
which were only partly restored by ready-to-use therapeutic food. These findings suggest that
the intestinal microbiota in undernutrition may trigger a catabolic state, including disturbed
amino acid metabolism, which may contribute to weight loss and associated metabolic
disturbances. Interestingly, however, weight and lean mass can be recovered in mice via
colonization with a consortium of weight-discriminatory taxa [43].

The programmed maturation of the microbiota in early childhood appears to influence linear as
well as ponderal growth. Stunting – defined as LAZ <�2 – is the most common form of
undernutrition worldwide [55]. A small study in India examined the longitudinal succession of
the infant microbiota from birth to 2 years, reporting that reduced relative abundance of B.
longum and Lactobacillus mucosae in addition to elevated relative abundance of Desulfovibrio
spp. was associated with stunting [57]. In a secondary analysis of data from children aged 0–2
years in Malawi and Bangladesh, Gough and colleagues reported that reduced microbiota
diversity, elevated Acidaminococcus spp. abundance, and elevated glutamate fermentation
pathways were all predictive of future linear growth deficits [58]. Furthermore, in-depth char-
acterization of the fecal and upper gastrointestinal (duodenal and gastric) microbiome from
infants in the Central African Republic and Madagascar found that taxa of oropharyngeal origin
were overrepresented in these lower gastrointestinal regions of stunted infants. These findings
suggest that decompartmentalization of the gastrointestinal tract occurs in stunting whereby
oral taxa translocate to lower regions and may plausibly play a role in linear growth deficits and
its associated inflammation [117].

Box 2. The Role of Infection, Enteropathogens, and Diarrhea in Undernutrition

Beyond 6 months, children in LMICs become exposed to a greater number of pathogens through water, solid foods,
soil, and the surrounding environment. This elevated exposure to pathogenic organisms may disturb normal gut
microbiota assembly and hence impair growth. Large multicountry studies have observed that carriage of entero-
pathogens begins very early in infancy and is almost ubiquitous among children in impoverished LMIC settings in the
first 2 years of life, yet pathogen carriage is often subclinical [109]. Recent data from the MAL-ED study in seven different
LMICs observed that infants carried on average at least one enteropathogen in nondiarrheal stools [110]. A higher
number of pathogens was inversely associated with both ponderal and linear growth in the first 2 years of life. Giardia
and associated enteroinvasive pathogens, and those involved in mucosal disruption, appeared to have the most
profound influence on systemic inflammation, gut inflammation, and impaired growth [111]. In animal models the
pathogenic inflammatory effect of Giardia during undernutrition is dependent upon its interaction with the host
microbiota and is amplified through coinfection with enteroaggregative Escherichia coli [112]. This interaction between
common enteropathogens and the microbiota remains underexplored, and little is known about whether enteropatho-
gens disturb the commensal microbial composition and function and whether this interferes with the host-microbiota
pathways that mediate growth. Wagner et al. conducted an elegant study that described the role of Bacteroides fragilis
as a pathobiont, whereby the presence or absence of the B. fragilis toxin (bft) discriminated between enterotoxigenic
and nontoxigenic strains [113]. Transfer of a culture collection from stool containing a strain of toxigenic B. fragilis from a
stunted child to germ-free mice induced significant weight loss and impaired host energy metabolism compared to
animals colonized with stool from a healthy donor carrying a nontoxigenic strain. Removal of the toxigenic strain
prevented weight loss in the animals; however, addition of this strain to the healthy donor’s culture collection did not
induce weight loss when transferred to the animals. These results suggest that the presence of certain pathobionts is
not sufficient to induce malnutrition phenotypes alone but rather are dependent upon expression of virulence factors
and interaction with the larger intestinal microbial community.
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Microbial and Host Metabolism
Both SAM and stunting are associated with disturbed host metabolic phenotypes, particularly
energy metabolism, nutrient metabolism, and amino acid turnover [59]. Little mechanistic
evidence however has demonstrated if and how the dysbiotic microbiota observed in under-
nutrition contributes to these altered metabolic processes. In experimental mice, zinc- and
protein-deficient diets induced major changes in the intestinal microbiota following weaning,
accompanied by disturbed energy metabolism and upregulated dietary choline processing
[60]. Furthermore, the microbiota and microbial-derived metabolites fail to recover during
catch-up growth following a period of undernutrition, suggesting that undernutrition may
persistently disrupt gut microbial metabolism [61]. Stunting in Brazilian children was associated
with greater abundance of urinary phenylacetylglutamine (PAG), 4-cresyl sulfate (4-CS), and 3-
indoxyl sulfate (3-IS), which are microbial metabolites of the amino acids phenylalanine,
tyrosine, and tryptophan, respectively [62]. Reductions in essential amino acids are also
associated with the microbiome in wasting [63]. Hence undernutrition appears to be associated
with, and plausibly mediated by, greater proteolytic activity of the host microbiota. Further
research is warranted to delineate the host-induced versus microbial-induced changes to host
metabolism observed in undernutrition. Million et al. also observed that SAM was associated
with depletion of obligate anaerobes and the methanogenic archaeal species Methanobrevi-
bacter smithii, which appeared consistent across five cohorts from Africa and Asia
[42,56,64,65]. The authors hypothesized that this dysbiosis decreases fecal antioxidant
capacity and hence impairs microbial nutrient energy harvesting, thereby exacerbating
malnutrition.

Disturbances in microbial and host metabolism may be driven by differences in micro-
biome function as well as composition, through the acquisition of particular microbial
genes. Using genome-scale metabolic models (GEMs), it has been shown that particular
metagenomic pathways involved in fatty acid and amino acid metabolism are less abun-
dant in cases of malnutrition, suggesting that metagenomes may influence nutritional
status [63].

Microbiota Impact on Endocrine Pathways
There is some evidence that the effect of the microbiota on growth phenotypes is mediated
through indirect influence on the somatotropic axis. Inflammatory proteins such as C-reactive
protein (CRP) and alpha-1 acid glycoprotein (AGP), which are stimulated by infection, are
inversely associated with IGF-1 and linear growth [66]. However, germ-free mice gain signifi-
cantly less weight and body length during lactation compared with conventionally raised
animals [41]. Interestingly, these effects become more pronounced following weaning and
in the presence of a depleted diet and appear to be attributed to significantly reduced skeletal
growth. IGF-1, a mediator of the effects of growth hormone (GH), was also significantly
depleted in germ-free animals, an effect that was strongest following weaning, supporting
the essential role of the microbiota in endocrine-mediated growth pathways. In both Drosophila
and mice, particular strains of Lactobacillus plantarum restore normal growth, IGF-1 production
and activity, and sensitivity of peripheral tissue to GH [41,67], the mechanism of which is
unclear. Recent evidence suggests that short-chain fatty acids restore bone mass, growth, and
IGF-1 in animals following growth deficits induced by antibiotics [39]. Hence, normal microbial
products of fermentation may play a regulatory role in somatotropic axis stability and growth
phenotypes in early life, which may have implications for stunting and wasting observed in
infants.
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Environmental Enteric Dysfunction
An attractive hypothesis surrounding the mechanisms of growth faltering suggests that a
condition termed environmental enteric dysfunction (EED), also called environmental
enteropathy, which is characterized by subclinical structural and functional small intestinal
changes, mediates the suppression of early-life growth pathways through impaired nutrient
absorption (via villous blunting) and chronic inflammation [68]. However, data on the impact of
EED on stunting remain heterogeneous, and the role of the microbiota in EED has not yet been
established. However, substantial evidence suggests an essential role for the gut microbiota in
priming the structural integrity of the intestinal barrier in early life (Box 3), and recent reports
indicate that microbiota dysbiosis in LMIC settings may trigger EED and hence undernutrition
[69]. One of the challenges of associating EED with the microbiota is the lack of easy microbiota
sampling of the upper gastrointestinal tract where EED occurs. A characteristic fecal microbiota
signature of EED does not exist, but some evidence supports the overabundance of Mega-
sphaera and Sutterella in EED, which have also been associated with coeliac and Crohn’s
disease, respectively [70]. Animal studies have provided deeper insight into the microbial
composition of the upper gastrointestinal tract in experimental EED and undernutrition
[71,72]. Hashimoto et al. reported that angiotensin I converting enzyme (peptidyl-dipeptidase
A) 2 (Ace2) regulates amino acid metabolism, gut microbial homeostasis, and antimicrobial
peptide production [73]. Ace2 deficiency induced enteropathy in mice under conditions of
protein malnutrition, which could be transferred to other animals through fecal transplantation
and restored following dietary tryptophan treatment. Brown et al. developed a novel model of
EED and undernutrition through comprehensive 16S rDNA sequencing and metabolic phe-
notyping of the murine small intestine [74]. A cocktail of nonpathogenic Bacteroidales species
and Escherichia coli in combination with an undernourished diet produced growth deficits,
impaired tolerance to pathogen challenge, and characteristic features of enteropathy (reduced
villous height and tight-junction protein expression, increased intestinal permeability, and
intestinal inflammation). Mucosal immune responses may play an essential role in mediating
the effects of a ‘dysbiotic’ microbiota in EED and undernutrition [75]. In SAM, immunoglobulin A

Box 3. Microbiota Priming of Infant Gut Structure

The intestinal barrier functions as a selective gateway to prevent the translocation of microbes and their toxins, whilst
allowing nutrients from the intestinal lumen into the systemic circulation. This barrier comprises several protective layers
beginning with a mucus layer produced by goblet cells, which contains a concentration gradient of antimicrobial
peptides. An epithelial monolayer, sealed by tight junctions, lies beneath the mucus layer, acting as a physical barrier.
Finally the underlying lamina propria contains a plethora of immune cells that contribute to the innate immune system. If
these layers are compromised, bacteria and their toxins such as lipopolysaccharide (LPS) can translocate across the
impaired barrier eliciting a local and systemic inflammatory response in the host. Impaired intestinal barrier function,
intestinal and systemic inflammation may underlie both stunting and SAM [68]. These intestinal pathologies, referred to
as environmental enteric dysfunction (EED), in addition to chronic pathogen exposure and inflammatory stimuli may
impair innate and acquired immune responses, thereby increasing infectious morbidity and undernutrition [75].
However, recent evidence suggests that the commensal intestinal microbiota acts as an additional primary layer
within this intestinal barrier to assist with the selective absorption of nutrients and protection against invading
pathogens. Indeed, the acquisition of a commensal microbiome is essential for priming this complex gut structure.
Studies using human intestinal organoids (HIOs) demonstrate that exposure of nonpathogenic E. coli to HIOs induces
transcriptional responses associated with antimicrobial defence and epithelial barrier production in addition to the
production of antimicrobial peptides, the maturation of enterocytes, and the formation of a mucus layer [114]. Genome-
wide analysis of murine infant intestinal epithelial cells (IECs) has also identified ‘functional’ DNA methylation signatures
which are microbiota-dependent and involved in the maturation of the transcriptional programming of IECs postnatally
[115]. The dependence of infant intestinal structural programming on the introduction and interaction of a commensal
microbiota suggests that ‘dysbiotic’ microbial communities may impair this programmed intestinal structuring in the first
1000 days, thereby contributing to EED, as has been observed in similar conditions including necrotizing enterocolitis
[116]. The impaired intestinal structure observed in EED has been hypothesized to play a causal role in child under-
nutrition via inflammatory mechanisms [68], and animal studies have reported mechanistic evidence by which specific
microbial communities interact with diet to produce EED phenotypes and impaired growth [74].
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(IgA) appears to target a consortium of species within the intestinal microbiota dominated by
Enterobacteriaceae, which, if isolated and transferred to germ-free mice, induces weight loss
and enteropathy [76]. Microbes with less affinity to IgA, or the IgA-targeted fraction from healthy
donors, do not induce such an effect. Hence, immune-microbiota communication appears to
be dependent upon nutritional status, which may mediate responses to infection and future
growth.

Intergenerationality of a Malnourished Microbiome
Undernutrition and its associated sequelae are perpetuated across generations. Mothers with
short stature have higher risk of stunted children [55]. Much of this intergenerationality may be
attributed to epigenetic modifications that impair offspring growth. Here, we propose that
intergenerationality of an ‘undernourished’ microbiome also contributes to growth impairments
across generations. Intergenerational transmission of a dysbiotic microbiota has been pro-
posed in metabolic disorders, including obesity [77] and in enteropathic conditions such as
colitis [78]. Furthermore, the deleterious effects of nutrient deficiencies on the gut microbiota,
namely dietary fiber, are reversible within a single generation, but become largely irreversible if
reintroduced into the diet in subsequent generations [79]. Hence diet-induced microbial
extinctions may occur in states of undernutrition, which are compounded across generations
and which contribute to the cycle of intergenerational undernutrition.

Intervening in the Malnourished Microbiota during the First 1000 Days and
Beyond
The growing evidence for a causal role of disturbed gut microbiota composition and function in
child malnutrition warrants intervention studies using microbiota-targeted therapies to prevent
or treat undernutrition. However, the cyclical process of undernutrition raises questions about
what is the most effective period in which to target interventions. The first 1000 days contain
windows of opportunity within which a disturbed microbiota may be amenable to intervention
(Figure 3).

Prenatal Preventative Interventions
The evidence that host–microbe interactions in utero may influence fetal and infant growth
trajectories raises the possibility that manipulation of the maternal microbiota during pregnancy
could impact infant growth. Treatment for maternal periodontal disease, for example, may
reduce the risk of low birth weight [80]. Conversely, poor water, sanitation, and hygiene
(WASH), and hence exposure to a more pathogenic environment, is associated with preterm
birth and low birthweight, suggesting that intensive WASH interventions may improve fetal
growth [81]. Antibiotic use during pregnancy has been associated with LBW in high-income
countries [82], and with increased birth weight, length, and reduced preterm birth in LMIC,
plausibly due to the reduction of pathogens in the female reproductive tract that stimulate
preterm birth or SGA [83]. Moreover, antibiotic use during pregnancy continued to exert
beneficial effects on postnatal growth in a recent Malawian study, leading to reductions in
stunting up to 5 years of age [84]. The effect of probiotics and prebiotics on birth outcomes
remains unclear. Maternal probiotic intake during pregnancy has been associated with reduced
risk of pre-term delivery [85]. However, a recent meta-analysis found no effect of either maternal
prebiotics or probiotics on birth weight or other birth outcomes [86].

Postnatal Preventative Interventions
A meta-analysis of antibiotic trials in LMICs has shown benefits for ponderal and linear growth,
which may be mediated by effects on the gut microbiota [87]. In high-income settings,
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observational evidence suggests that probiotics can improve growth in preterm or LBW infants
[88] but many interventions have failed to report a beneficial effect [89]. Conversely, several trials
report positive effects of probiotics on weight gain in children at risk of undernutrition in LMIC
settings [90–92]. A recent intervention trial among 4500 newborn infants in India reported
significantly reduced rates of sepsis and death following 7-day treatment with an oral symbiotic
(Lactobacillus plantarum + fructo-oligosaccharides) beginning on day 2–4 of life; the
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intervention also significantly increased weight in infants [91]. These results were obtained
among a cohort of healthy weight, term infants and hence raise the possibility that such
interventions may have an even greater effect in preterm or LBW infants at higher risk of sepsis
and undernutrition. Complex carbohydrates are readily fermented by the intestinal microbiota,
producing short-chain fatty acids (SCFAs) and other metabolites beneficial for intestinal
epithelial integrity. Locally sourced legumes containing such fibers have demonstrated some
ability to reduce deficits in LAZ, potentially through amelioration of EED [93].

Treating Undernutrition
Gut microbiota-targeted interventions may not only prevent but also help to treat both acute
and chronic undernutrition. Current ready-to-use therapeutic foods (RUTFs), however, are
insufficient to persistently restore microbiota maturity, which reverts to an immature state 3–4
months post-treatment [42]. These findings have crucial implications for approaches to SAM
treatment. Mortality remains as high as 42% in children hospitalized with complicated SAM,
and relapse occurs in a substantial proportion after discharge [94]; furthermore, children
treated for SAM exhibit long-term growth deficits [94,95]. Hence, future interventions should
examine the use of combined nutrition plus microbiota-targeted treatments to persistently
restore microbiota maturity and healthy growth.

The use of antibiotics in all cases of complicated SAM was adopted into WHO guidelines in
1999; however, their benefit for nutritional recovery remains uncertain. One large study of 2767
children with uncomplicated SAM in Malawi reported that the addition of antibiotics to standard
RUTF significantly improved nutritional recovery and reduced mortality [96]. However, similar
large trials among children with uncomplicated SAM in Niger, and complicated SAM in Kenya,
reported no benefits of antibiotic treatment on mortality or nutritional recovery [97,98]. Data
from probiotic intervention studies provide promising evidence for their potential in undernutri-
tion; however, their potential as therapeutic interventions following SAM remains unclear [99].
Future studies require careful consideration of dosage, timing of intervention, and selection of
probiotic strains capable of colonizing the undernourished intestine and suitable to the specific
setting [100]. Finally, as has been observed through the restoration of metabolic disruption in
overnutrition, complete recolonization of the intestinal microbiota through fecal microbiota
transplantation (FMT) from healthy donors poses the potential to restore intestinal function,
metabolic homeostasis, and growth where children with SAM fail to respond to standard
treatment (https://clinicaltrials.gov/ct2/show/NCT03087097). Indeed, future undernutrition
therapies should consider dual complementary approaches that combine nutritional and
microbiota interventions to optimize treatment.

Beyond 1000 Days
Windows of opportunity to enhance growth may also exist beyond the first 1000 days (Figure 3).
The assembly and maturation of the gut microbiota has largely occurred by the age of 2 or 3
years, hence strategies to target the gut microbiota after this period may have less impact.
However, the periconceptional period in adolescent females, beginning 14 weeks prior to
conception [101], may represent an additional window of opportunity in which to optimize
nutrition and the gut microbiota [102], which may have significant benefits for health and
nutrition behaviors [103], suggesting potential for microbiota-targeted therapies as well. Hence,
an expanded view of early life that includes this preconception period, may help to optimize
nutritional and microbiota-targeted therapies to prevent the intergenerational cycle of
malnutrition.
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Concluding Remarks
As DNA-sequencing technologies continue to undergo rapid advances, the knowledge that
has been gained about coevolution of humans with our microbial symbionts has grown
enormously. Arguably the most pressing focus for this emerging knowledge is global child
health. Despite under-5 mortality rates falling by half since 1990, undernutrition continues to
underlie 45% of all child deaths, and there are few current effective preventive interventions.
One-quarter of under-5 children globally are stunted and, due to population growth, the
absolute number of stunted children in sub-Saharan Africa is increasing. Thus, the renewed
focus on global public health is for children not just to survive but to thrive. Substantial evidence
suggests that the trajectories of child growth and development are primed during the first 1000
days, or even earlier. Hence, this early-life period represents a critical window in which to focus
mechanistic research and interventions. Here we have reviewed the rapidly growing knowledge
of how the human microbiota regulates growth and developmental trajectories during the first
1000 days. The concurrent assembly of the microbiota alongside endocrine, immune, and
metabolic pathways indicates tight regulatory interdependence between microbiota and host
underlying growth and development. Despite promising findings regarding microbiota-induced
effects on child growth, a number of outstanding questions surrounding the mechanisms of
these interactions remain (see Outstanding Questions). Deeper insight is required into how the
microbiota of the infant responds to prenatal influences, high pathogen burden, and different
dietary patterns. Better understanding these host–microbiota interactions in early-life growth
will inform targeted interventions to reduce global morbidity and mortality associated with child
undernutrition.
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Outstanding Questions
What is the composition and function of
thesmall intestinalmicrobiota inthecon-
text of undernutrition? Characterizing
the microbiota in the upper gastrointes-
tinal tract, where EED and most nutrient
absorptionoccurs,wouldprovideprom-
ising insights that may not be observed
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microbiome in the context of undernutri-
tion, and does this intergenerational trans-
fer influence postnatal growth?

What probiotics are effective in colo-
nizing the ‘undernourished’ gut in both
stunted or SAM children?

What microbiota-targeted intervention
(antibiotics, diet, probiotics, FMT) is
most effective and sustainable for
resolving undernutrition and associ-
ated outcomes? Are combined thera-
pies more effective?
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