Solutions of ECOM073 TEST 2024

Question 1 (33 marks)

(i) Test for absence of correlation using the following Eview output.Use all available information given in this output.Justify and explain your answers.

The sample size is N = 400.

Correlogram of R										
Date: 06/11/20 Time: 12:56 Sample: 1 400 Included observations: 400										
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob				
ı j ı	I <u> </u>	1	0.032	0.032	0.4132	0.520				
1 🛛	1 1 1	2	0.071	0.070	2.4559	0.293				
1 j 1		3	0.034	0.030	2.9181	0.404				
ı <u>p</u> i	ון ו	4	0.072	0.065	5.0071	0.287				
11	1	5	-0.006	-0.014	5.0211	0.413				
ı p i	ון ו	6	0.056	0.046	6.2865	0.392				
1	1 1	7	0.007	0.001	6.3071	0.504				
I 🚺 I	ן ון ו	8	-0.021	-0.032	6.4796	0.594				
ı j ı		9	0.033	0.032	6.9152	0.646				
1		10	0.013	0.008	6.9898	0.726				

Solution of question 1.

(i) (Testing for correlation using ACF.) Time series is a white noise if it is serially uncorrelated, that is $\rho_k = 0$ for $k \ge 1$. Hence, to test for white noise, we test the hypotheses

 $H_0: \rho_k = 0$ against alternative $H_1: \rho_k \neq 0$ at each lag k = 1, 2, ... at significance level 5%.

Rule: ACF ρ_k at lag k is significantly different from zero at 5% significance level if $|\hat{\rho}_k| > 2/\sqrt{N}$, where N is the number of observations.

If $|\hat{\rho}_k| \leq 2/\sqrt{N}$, then ACF at lag k is not significantly different from 0.

(ii) Ljung-Box test. This test can be also used to test for zero correlation. We select m = 1, 2, ... and test the hypothesis

 $H_0: \rho_1 = \dots \rho_m = 0$ against alternative $H_1: \rho_j \neq 0$ for some $j = 1, \dots, m$.

We reject the H_0 at 5% significance level, if p- value satisfies p < 0.05. If time series is white noise, that we do not reject H_0 for any m = 1, 2, ...

(iii) We have $2/\sqrt{N} = 2/\sqrt{400} = 0.1$. Since $|\rho_1| = 0.023 < 0.1$, $|\rho_2| = 0.032 < 0.1$, ..., and so on. We find that ρ_k is not significant at any lag $k = 1, 2, \ldots$ at 5% significance level, because $|\rho_k| \le 2/\sqrt{N} = 2/\sqrt{400} = 0.1$. So, this time series is a white noise.

From the correlogram we see that *p*-values of Ljung Box test satisfy p > 0.05 for all m = 1, ... So H_0 is not rejected at any *m* and this time series is a white noise.

Question 2 (34 marks)

- (i) Explain what is meant by a "stationary time series".
- (ii) Test for significance of the skewness and excess kurtosis of returns r_t using summary statistics given below. Explain your testing procedures. What can you say about the distribution of r_t ? The sample size is N = 400.

Solution of Question 2.

(i) Time series X_t is a covariance stationary time series if it satisfies three properties:

 $-EX_t = \mu$ for all t (does not depend on t);

 $-Var(X_t) = \sigma^2$ for all t (does not depend on t);

 $-Cov(X_t, X_{t-k}) = \gamma_k$ - covariance function depends only on the lag k and does not depend on t.

In case of a non-stationary time series, one of these properties will be not satisfied, for example the mean EX_t could vary in time.

(ii) Testing whether skewness S(X) = 0 (symmetry of distribution). We test the hypothesis

$$H_0: S(X) = 0$$
 against alternative $H_1: S(X) \neq 0$.

at 5% significance level.

We construct the test statistics:

$$t = \frac{S(X)}{\sqrt{6/N}} = \frac{0.01543}{\sqrt{6/400}} = 0.12599$$

Under the null hypothesis, $t \sim N(0, 1)$ is normally distributed.

<u>Rule</u>: we reject H_0 at 5% significance level, if

 $|t| \ge 2.$

In our case |t| = 0.12599 < 2. Hence, the test shows that there no evidence in the data to reject the null hypothesis of zero skewness S(X) = 0.

Testing whether kurtosis K(x) = 3 (non heavy tails).

Next we test at 5% significance level the hypothesis:

 $H_0: K(X) - 3 = 0$ against alternative $H_1: K(X) \neq 3$.

We use the test statistics:

$$t = \frac{\ddot{K}(X) - 3}{\sqrt{24/N}} = \frac{2.775 - 3}{\sqrt{24/400}} = -0.91856.$$

By theory, under null hypothesis, $t \sim N(0, 1)$ is normally distributed. Therefore the testing rule is similar as for testing skewness:

<u>Rule</u>: reject H_0 at 5% significance level, if

 $|t| \ge 2.$

In our case |t| = 0.91856 < 2. Hence, the test does not rejects the null hypothesis of zero kurtosis K(X) = 3.

Jargue-Bera test for asymptotic normality. Jargue-Bera test is used to test the hypothesis:

 H_0 : S(X) = 0 and K(X) - 3 = 0 ("normal distribution")

against alternative

 $H_1: S(X) \neq 0$ or $K(X) - 3 \neq 0$ ("distribution is not normal").

Normal distribution has S(X) = 0 and K(X) = 3. Thus, in case of normal distribution, test will not reject H_0 .

Test will reject H_0 if either skewness is not 0 or if kurtosis is not 3. That will indicate that distribution is not normal.

Since the p = 0.6527 value of Jargue-Bera test is larger than 0.05 we do not reject the asymptotic normality at significance level 5%.

Question 3 (33 marks)

(i) Using the given Eviews output determine the order of AR(p) and MA(q) model you would fit to the data. Explain your answer.

The sample size is N = 400.

Correlogram of Y										
Date: 04/10/20 Time: 09:19 Sample: 1 400 Included observations: 400										
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob					
		1 -0.796 2 0.637 3 -0.532 4 0.445 5 -0.365 6 0.323 7 -0.290 8 0.226 9 -0.170 10 0.131	-0.796 0.010 -0.061 0.005 0.015 0.065 -0.016 -0.080 0.018 -0.003	255.30 419.30 534.03 614.45 668.63 711.29 745.71 766.62 778.51 785.60	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000					

Solution of Question 3:

(i) To select the order p for AR(p) model, we use the sample PACF function. We test the hypothesis

 $H_0: \rho_k = 0$ against alternative $H_1: \rho_k \neq 0$ at lags k = 1, 2, ... at significance level 5%, where ρ_k is the PACF function.

PACF $\hat{\rho}_k$ at lag k is significantly different from 0 at 5% significance level, if $|\hat{\rho}_k| > 2/\sqrt{N}$, where N is the number of observations.

If $|\hat{\rho}_k| \leq 2/\sqrt{N}$, then PACF at lag k is not significantly different from 0.

Rule: we select for p the largest lag k at which the PACF is significant.

This rule can be used because PACF of the AR(p) model becomes 0 for k > p.

—- To select the order q of MA(q) model, we use the sample ACF function. We test the hypothesis

 $H_0: \rho_k = 0$ against alternative $H_1: \rho_k \neq 0$ at lags k = 1, 2, ... at significance level 5%, where ρ_k is ACF function.

Rule: ACF ρ_k is significant at lag k at 5% significance level, if $|\hat{\rho}_k| > 2/\sqrt{N}$, where N is the number of observations.

If $|\hat{\rho}_k| \leq 2/\sqrt{N}$, then ACF at lag k is not significantly different from 0.

We select for q the largest lag k at which the ACF is significant.

(ii) We have $2/\sqrt{N} = 2/\sqrt{400} = 0.1$. The PACF is significant only at lag 1. Hence we would fit AR(1) model.

The ACF shows significant correlation at the lags 1 to 10. Hence we would fit MA(10) model.

From the two models AR(1) and MA(10) we select a simpler model AR(1) with smaller number of parameters which should to be fitted to the data.

(iii) According to (ii), we can fit AR(1) model

$$X_t = \phi_0 + \phi X_{t-1} + \varepsilon_t$$

where ε_t is white noise.

(iv) This AR(1) model would fit the data if residuals $\hat{\varepsilon}_t = X_t - \hat{\phi} X_{t-1}$ are uncorrelated. We could use the correlogram of residuals to test whether

residuals are uncorrelated.