CW11-SOLVTIONS
(1) For radial tiunclile geoclesiss, we have

$$
\mathcal{L}=-\left(1-\frac{2 G M}{r}\right) \dot{t}^{2}+\frac{\dot{r}^{2}}{1-\frac{G G M}{r}}=-1
$$

Since $\frac{\partial \mathcal{L}}{\partial t}=0 \Rightarrow\left(1-\frac{2 G M}{r}\right) \dot{t}=E$ is conserved. Using this m \mathcal{Z} we get

$$
\begin{aligned}
& L=-\frac{E^{2}}{1-\frac{2 G M}{r}}+\frac{\dot{r}^{2}}{1-\frac{2 G M}{r}}=-1 \\
& \Rightarrow \quad \dot{r}^{2}=\left(1-\frac{2 G M}{r}\right)\left[\frac{E^{2}}{1-2 \frac{-M}{r}}-1\right] \\
&=E^{2}-\left(1-\frac{2 G M}{r}\right)
\end{aligned}
$$

Thus, $\quad \frac{d r}{d \tau}= \pm \theta \sqrt{E^{2}-\left(1-\frac{2 G M}{r}\right)}$
\uparrow ingoing geodesic
Setting $E=1$, we have that the ingoing nachial geodesics satisfy,

$$
\frac{d r}{d \tau}=-\sqrt{\frac{2 G-M}{r}}
$$

Hence the paper time is given by

$$
\int_{0}^{\tau} d \tau=\tau=-\int_{r_{0}}^{0} d r \frac{1}{\sqrt{\frac{2 G H}{r}}}=\frac{2}{3 \sqrt{2 G M}} r_{0}^{3 / 2}
$$

(2) Consider the Ken metric: $(G=1)$

$$
\begin{aligned}
d s^{2}= & -\frac{\Delta-a^{2} \sin ^{2} \theta}{\Sigma} d t^{2}-\frac{4 M \operatorname{ar} \sin ^{2} \theta}{\Sigma} d t d \phi \\
& +\frac{\left(r^{2}+a^{2}\right)^{2}-a^{2} \Delta \sin ^{2} \theta}{\Sigma} \sin ^{2} \theta d \phi^{2}+\frac{\Sigma}{\Sigma} d r^{2}+\Sigma d \theta^{2}
\end{aligned}
$$

(Note that $\Sigma-2 M r=r^{2}+a^{2} \cos ^{2} \theta-2 M r$

$$
=r^{2}+a^{2}-2 M r-a^{2} \sin ^{2} \theta=\Delta-a^{3} \sin ^{2} \theta
$$

The metric can be unitten as fellows:

$$
\begin{aligned}
d s^{2}= & -\frac{\Delta \sum}{\left(a^{2}+r^{2}\right)^{2}-a^{2} \Delta \sin ^{2} \theta} d t^{2} \\
& +\frac{\left(r^{2}+a^{2}\right)^{2}-a^{2} \Delta \sin ^{2} \theta}{\Sigma} \sin ^{2} \theta\left(d \phi-\frac{2 M a r}{\left(r^{2}+a^{2}\right)^{2}-a^{2} \Delta \sin ^{2} \theta} d t\right)^{2} \\
& +\frac{\sum}{\Delta} d r^{2}+\Sigma d \theta^{2}
\end{aligned}
$$

Following what we che for Schw, we seek a coordinate transformation to cancel the $d r^{2}$ team in the matrix. The, we consider

$$
d r=d t+\frac{f_{1}(r)}{\Delta} d r
$$

Because of the rotation, we aldo have to transform the angle ϕ if we wok to get aid off the $d r^{2}$ term. Then,

$$
d x=d \phi+\frac{f_{2}(r)}{\Delta} d r
$$

Not that the unknown function f_{1} and f_{2} can only depend on r, otherwise this wouldn't be a proper concinnate tram formation.
Demancling that the nosed tarn m the metric brei has coefficient 2 uniquely fixes $f_{1}(r)$ and $f_{2}(r)$. We have

$$
\begin{aligned}
& d t=d r-\frac{r^{2}+a^{2}}{\Delta} d r \\
& d \phi=d \chi-\frac{a}{\Delta} d r
\end{aligned}
$$

and the metric becomes:

$$
\begin{aligned}
d s^{2}= & -\frac{\Delta-a^{2} \sin ^{2} \theta}{\Sigma} d v^{2}+2 d r d r \\
& -2 a \sin ^{2} \theta\left(\frac{\left.r^{2}+a^{2}-\Delta\right)}{\Sigma} d r d x-2 a \sin ^{2} \theta d \chi d r\right. \\
& +\frac{\left(r^{2}+a^{2}\right)^{2}-\Delta a^{2} \sin ^{2} \theta}{\Sigma} \sin ^{2} \theta d x^{2}+\Sigma d \theta^{2}
\end{aligned}
$$

Note that thees is no dr e term in the metric, as erected $\sin u$ is a null coonchinaté.

You com cluck that this metric is regular and invertible at $\Delta=0$.

Consider radial null geodesics on the equatorial plane: $\dot{\chi}=\dot{\theta}=0, \theta=\pi / 2$

$$
\begin{aligned}
\Rightarrow \mathcal{Z} & =-\frac{\Delta}{r^{2}} \dot{v}^{2}+2 \dot{v} \dot{r}=0 \text { for null goods. } \\
& \dot{v}\left(-\frac{\Delta}{r^{2}} \dot{v}+2 \dot{r}\right)=0
\end{aligned}
$$

$v^{v}=0 \Rightarrow v=$ coot \rightarrow ingoing null grads.

$$
-\frac{\Delta}{r^{2}} \vec{v}+2 \vec{r}=0 \Rightarrow \frac{d v}{d r}=\frac{2 r^{2}}{\Delta}=\frac{2 r^{2}}{\left(r-r_{t}\right)\left(r-r_{-}\right)}
$$

\rightarrow outgoing null goods.
We see that at $r=r_{+}$(longest neal nook of Δ) the light cones tilt inwards.
(3)

$$
d s^{2}=-V d t^{2}+2 W d t d \phi+X d \phi^{2}+e^{2 \Lambda}\left(d p^{2}+d z^{2}\right)
$$

The inverse muctric is:

$$
g^{a b}=\left(\begin{array}{ccc}
\frac{-x}{v x+w^{2}} & \frac{w}{v x+w^{2}} & 0 \\
\frac{w}{v x+w^{2}} & \frac{v}{v x+w^{2}} & \\
0 & e^{-2 \Lambda} & \\
0 & & e^{-2 \Lambda}
\end{array}\right)
$$

Therese,

$$
\nabla^{a} t=g^{a b} \partial_{b} t=g^{a t}=\frac{1}{V x+W^{2}}\left(-X \delta_{t}^{a}+W \delta_{\phi}^{a}\right)
$$

$$
\begin{aligned}
g_{a b} \nabla^{a} t \nabla^{b} t=g_{a b} g^{a t} g^{b t} & =g_{t t}\left(g^{t t}\right)^{2}+2 g_{t \phi} g^{t t} g^{t \phi} \\
& +g_{\phi \phi}\left(g^{\phi \phi}\right)^{2} \\
& =-\frac{x}{v x+w^{2}}
\end{aligned}
$$

The foun-velocity of the locally nom-notating obsewers is then:

$$
u^{a}=\frac{\nabla^{a} t}{\left(-\nabla^{b} t \nabla_{t} t\right)^{1 / 2}}=\frac{1}{\sqrt{X\left(V X+W^{2}\right)}}\left(-X \delta_{t}^{a}+W \delta_{\phi}^{a}\right)
$$

The angular momantirn of such obsewees is:

$$
\begin{aligned}
L & =u^{a} R_{a}=g_{a b} u^{a}\left(\partial_{\phi}\right)^{b}= \\
& =g_{t p} u^{t}+g_{\phi \phi} u^{\phi}= \\
& =\frac{1}{\sqrt{\left(x\left(v x+w^{2}\right)\right.}}(-w x+X W)=0
\end{aligned}
$$

In teas of proper time τ, we have $\dot{x}^{a}=u^{a}$, and lance

$$
\dot{t}=u^{t}=\frac{-X}{\sqrt{X\left(V X+W^{2}\right)}}, \dot{\phi}=u^{\phi}=\frac{W}{\sqrt{X\left(V X+W^{2}\right)}}
$$

Them, $\frac{d \phi}{d t}=\frac{\dot{\phi}}{\dot{t}}=-\frac{W}{x}$
(4) Recall the formula for the smaze gravity given in the notes: $X^{n} \nabla_{a} X^{b}=k X^{b}$ We have
$\chi_{[a} \nabla_{b} \chi_{c]}=0$ on the horizon. Using Killing's equation

$$
\begin{aligned}
\nabla_{(a} x_{b)} & =0 \Rightarrow \nabla_{b} x_{c}=-\nabla_{c} x_{b} \\
\Rightarrow x_{[a} \nabla_{b} x_{c]} & =x_{a} \nabla_{b} x_{c}+x_{c} \nabla_{a} x_{b}+x_{b} \nabla_{c} x_{a}=0
\end{aligned}
$$

$\Rightarrow x_{c} \nabla_{a} x_{b}=-2 x_{[a} \nabla_{b]} x_{c}$ on the horizon.
Contracting with $\nabla^{a} X^{b}$ we find

$$
\begin{aligned}
x_{c}\left(\nabla^{a} \chi^{b}\right)\left(\nabla_{a} x_{b}\right) & =-2\left(x_{a} \nabla^{a} x^{b}\right)\left(\nabla_{b} x_{c}\right) \\
& =-2 k x^{b} \nabla_{b} \chi_{c} \\
& =-2 k^{2} x_{c}
\end{aligned}
$$

$\Rightarrow k^{2}=-\frac{1}{2}\left(\nabla^{a} X^{b}\right)\left(\nabla_{a} X_{b}\right)$ on the horizon.
(5) Recall the null wordimates adapted to ingoing and outgoing mull geodesics:

$$
\begin{aligned}
& v=t+r_{*} \quad \Rightarrow d v=d t+\frac{d r}{f(r)} \\
& u=t-r_{*} \Rightarrow d u=d t-\frac{d r}{f(r)}
\end{aligned}
$$

where $f(r)=1-\frac{2 G M}{r}$ for Schwangschild. The inverse relations are:

$$
\begin{aligned}
& d t=\frac{1}{2}(d v+d u) \\
& \frac{d r}{f(r)}=\frac{1}{2}(d v-d u)
\end{aligned}
$$

Subsitating there in the Schwargschilel metric gives

$$
\begin{aligned}
d s^{2} & =-f(r) d t^{2}+\frac{d r^{2}}{f(r)}+r^{2} d \Omega_{(2)}^{2} \\
& =-\frac{f(r)}{4}(d r+d u)^{2}+\frac{f(r)}{4}(d v-d u)^{2}+r^{2} d \Omega_{(2)}^{2} \\
& =-f(r) d v d u+r^{2} d \Omega_{(2)}^{2}
\end{aligned}
$$

which coincides with the form of the metric given in the notes.
(6) In the linearised theory we have

$$
\begin{aligned}
& y_{a b}=\eta_{a b}+h_{a b}+O\left(h^{2}\right) \\
& g^{a b}=\eta^{a b}-h^{a b}+O\left(h^{2}\right) \quad \text { when e } h^{a b}=\eta^{a c} \eta^{b d} h_{c d}
\end{aligned}
$$

Then,

$$
\begin{aligned}
g^{a c} g_{c b} & =\left(\eta^{a c}-h^{a c}+O\left(h^{2}\right)\right)\left(\eta_{c b}+h_{c b}+O\left(h^{2}\right)\right) \\
& =\delta^{a} b+h^{a} / b-h^{a} / b+O\left(h^{2}\right) \\
& =\delta^{a} b+O\left(h^{2}\right)
\end{aligned}
$$

(7) First we have to compute the Chistoffls in the lincanised approximation:

$$
\begin{aligned}
& g_{a b}=\eta_{a b}+h_{a b}+O\left(h^{2}\right) \\
& g^{a b}=\eta^{a b}-h^{a b}+O\left(h^{2}\right)
\end{aligned}
$$

where inchios are raised and lowered with $\eta_{a b}$.
Thin, the Chistoffels are:

$$
\begin{aligned}
\Gamma_{b c}^{a} & =\frac{1}{2} g^{a d}\left(\partial_{b} g_{c} d+\partial_{c} g_{b d}-\partial_{d} g_{b c}\right) \\
& =\frac{1}{2} \eta^{a d}\left(\partial_{b} h_{c d}+\partial_{c} h_{b d}-\partial_{d} h_{b c}\right)+O\left(h^{2}\right)
\end{aligned}
$$

$\sin c e \quad \partial_{a} \eta_{b c}=0$

The linearised Riemann tensor is:

$$
\begin{aligned}
R_{a b c d} & =g_{a c} R^{c} b_{c d} \\
& =g_{a c}\left(\partial_{c} \Gamma_{b d}^{e}-\partial_{d} \Gamma_{b c}^{e}+\Gamma_{j c}^{e} \Gamma_{b d}^{f}-\Gamma_{g d}^{e} \Gamma_{b c}^{f}\right) \\
& =\eta_{a c}\left(\partial_{c} \Gamma_{b d}^{e}-\partial_{d} \Gamma_{b c}^{e}\right) \\
& =\frac{1}{2} \partial_{c}\left(\partial_{b} h_{d a}+\partial_{d} h_{b a}-\partial_{a} h_{b d}\right) \\
& -\frac{1}{2} \partial_{d}\left(\partial_{b} h_{c a}+\partial_{d} h_{b a}-\partial_{a} h_{b c}\right) \\
& =\frac{1}{2}\left(\partial_{b} \partial_{c} h_{a d}+\partial_{a} \partial_{d} h_{b c}-\partial_{a} \partial_{c} h_{b d}-\partial_{b} \partial_{d} h_{c a}\right) \\
& +O\left(h^{2}\right)
\end{aligned}
$$

when we have and that $\Gamma \Gamma \sim O\left(h^{2}\right)$
The Rice tensor at linear order in hab is:

$$
\begin{aligned}
R_{b d} & =\eta^{a c} R_{a b c d} \\
& =\partial^{c} \partial_{(b} h_{d) c}-\frac{1}{2} \partial^{c} \partial_{c} h_{b d}-\frac{1}{2} \partial_{b} \partial_{d} h^{2}
\end{aligned}
$$

where $h=\eta^{a b} h_{a b}$.
From the Rice i tensor we compute the linearised Price scalar:

$$
\begin{aligned}
R & =\eta^{b d} R_{b d} \\
& =\partial^{b} \partial^{c} h_{b c}-\partial^{2} h \quad \text { when e } \partial^{2}=\partial^{c} \partial_{c} .
\end{aligned}
$$

Then, the linearised Einstein teaser is:

$$
\begin{aligned}
G_{a b} & =R_{a b}-\frac{1}{2} \eta_{a b} R \\
& =\partial^{(} \partial_{(a} h_{b)}-\frac{1}{2} \partial^{2} h_{a b}-\frac{1}{2} \partial_{a} \partial_{b} h \\
& -\frac{1}{2} \eta_{a b}\left(\partial^{c} \partial^{d} h_{c d}-\partial^{2} h\right)
\end{aligned}
$$

which is the clesinal result.
Now consider the transfonnatión:

$$
\begin{aligned}
& \bar{h}_{a b}=h_{a b}-\frac{1}{2} h \eta_{a b} \\
& \bar{h}_{a}=\bar{h}_{a}^{a}=-h \\
& \Rightarrow \bar{h}_{a b}=h_{a b}+\frac{1}{2} \bar{h} \eta_{a b} \Rightarrow h_{a b}=\bar{h}_{a b}-\frac{1}{2} \bar{h}^{2} \eta_{a b}
\end{aligned}
$$

The various terms in $G_{a b}$ in terms of hab become

$$
\begin{aligned}
& \partial^{c} \partial_{(a} h_{b) c}=\partial^{c} \partial_{(a} \bar{h}_{b) c}-\frac{1}{2} \partial_{a} \partial_{b} \bar{h} \\
& \partial^{2} h_{a b}=\partial^{2} \bar{h}_{a b}-\frac{1}{2} \eta_{a b} \partial^{2} h_{h} \\
& \partial_{a} \partial_{b} h=-\partial_{a} \partial_{b} \bar{h}^{c} \\
& \partial^{c} \partial^{d} h_{c d}=\partial^{c} \partial^{d} \bar{h}_{c d}-\frac{1}{2} \partial^{2} \bar{h} \\
& \partial^{2} h=-\partial^{2} \bar{h}
\end{aligned}
$$

Putting werything together, we get

$$
\begin{aligned}
G_{a b}= & \partial^{c} \partial_{\left(a, \bar{h}_{b) c}\right.}-\frac{1}{2} \partial a \partial_{\partial b} \bar{h} \\
& -\frac{1}{2}\left(\partial^{2} \bar{h}_{a b}-\frac{1}{2} \eta_{a b} \partial^{2} \bar{h}\right)+\frac{1}{2} \partial_{a} \partial_{b} \bar{h} \\
& -\frac{1}{2} \eta_{a b}\left[\partial^{c} \partial^{d} \bar{h}_{c d}-\frac{1}{2} \partial^{2} \bar{h}+\partial^{2} \bar{h}_{a}\right] \\
& =-\frac{1}{2} \partial^{2} \bar{h}_{a b}+\partial^{c} \partial_{(a} \bar{h}_{b) c}-\frac{1}{2} \eta_{a b} \partial^{c} \partial^{d} \bar{h}_{c d}
\end{aligned}
$$

From which the dosined noult follows.
(8) Consider the neridual gange transfonmations:

$$
H_{a b} \rightarrow H_{a b}+i\left(K_{a} X_{b}+K_{b} X_{a}-\eta_{a b} K^{c} X_{c}\right)
$$

The comproments Hoa tiansform as

$$
H_{o a} \rightarrow H_{o a}+i\left(K_{a} X_{0}+K_{0} X_{a}\right)
$$

Setting this to zew we get:

$$
\begin{aligned}
& H_{00}+2 i K_{0} X_{0}=0 \Rightarrow X_{0}=\frac{i H_{00}}{2 K_{0}} \\
& H_{0 i}+i\left(K_{i} X_{0}+K_{0} X_{i}\right)=0 \\
& \Rightarrow X_{i}=\frac{i H_{0 i}}{K_{0}}-\frac{K_{i}}{K_{0}} X_{0}=\frac{i}{K_{0}}\left(H_{0 i}-\frac{K_{i}}{2 K_{0}} H_{00}\right)
\end{aligned}
$$

This shows that with this residual gauge freedom we com achieve the longiluclinal gauge. How were, note that the longitucial part of the gauge parameter X_{a} is not fined. Indeed,

$$
\begin{aligned}
& K^{a} X_{a}=K_{0}^{0} X_{0}+K^{i} X_{i}=-K_{0} X_{0}+K_{i} X_{i} \\
& =-K_{0}\left(i \frac{H_{00}}{2 K_{0}}\right)+\frac{i}{K_{0}}\left(K_{i} H_{0 i}-\frac{K_{i} K_{i}}{2 K_{0}} H_{00}\right) \\
& =-\frac{i H_{00}}{2}+\frac{i}{K_{0}}\left(K_{i} H_{0 i}-\frac{K_{0}^{2}}{2 K_{0}} H_{00}\right) \\
& =-i H_{00}+\frac{i}{K_{0}} K_{i} H_{0 i}=\frac{i}{K_{0}}\left(-K_{0} H_{00}+K_{i} H_{0 i}\right) \\
& =\frac{i}{K_{0}}\left(+K^{0} H_{00}+K^{i} H_{0 i}\right)=\frac{i}{K_{0}} K^{a} H_{0 a}=0
\end{aligned}
$$

$\sin u k^{2}=k^{a} k_{a}=-k_{0}^{2}+k_{i} k_{i}=0$
The tracelesnows conchition fixes the longituchinal pant of X_{a} :

$$
\begin{aligned}
& H=\eta^{a b} H_{a b} \rightarrow H+i\left(2 K^{a} X_{a}-4 K^{c} X_{c}\right) \\
&=H-2 i K^{c} X_{c}=0 \\
& \Rightarrow K^{c} X_{c}=-\frac{i}{2} H
\end{aligned}
$$

(9)

$$
\begin{aligned}
& \left\langle\eta^{a b} R_{a b}^{(2)}[h]\right\rangle=\left|\begin{array}{l}
\text { We can igwoue the fotal cleivivative } \\
\text { m }(7.28)^{\text {in }} \text { in compming the arange }\langle\ldots\rangle
\end{array}\right| \\
& =\left\langle\frac{1}{2} h^{c d} \partial^{2} h_{c d}-h^{c d} \partial_{c} \partial^{a} h_{a d}+\frac{1}{4}\left(\partial_{a} h_{c d}\right)\left(\partial^{a} h^{c d}\right)\right. \\
& +\frac{1}{2}\left(\partial^{c} h^{d a}\right)(\partial c h d a)-\frac{1}{2}\left(\partial^{c} h^{d a}\right)\left(\partial_{l} h_{c a}\right) \\
& \left.-\frac{1}{4}\left(\partial^{c} h\right)(\partial c h)-\left(\partial_{c}^{2} h^{c d}-\frac{1}{2} \partial^{d} h\right) \partial^{a} h a d\right\rangle \\
& =\left\langle-\frac{1}{2}\left(\partial_{a} h_{c l}\right)\left(\partial^{a} h^{c d}\right)+\left(\partial_{c} h^{c d}\right)\left(\partial^{a} h_{a d}\right)\right. \\
& +\frac{1}{4}\left(\partial_{a} h_{c d}\right)\left(\partial^{a} h^{c d}\right) \\
& +\frac{1}{2}\left(\partial^{c} h^{d a}\right)\left(\partial_{c} h_{d a}\right)-\frac{1}{2}\left(\partial_{d} h^{d a}\right)\left(\partial^{c} h_{c a}\right) \\
& -\frac{1}{4}\left(\partial^{c} h\right)\left(\partial_{c} h\right) \\
& \left.\left.-\left(\partial_{c} h^{c d}\right)\left(\partial^{a} h_{a d}\right)+\frac{1}{2} \partial^{d} h\right)\left(\partial a h_{\text {ad }}\right)\right\rangle \\
& =\left\langle\frac{1}{4}\left(\partial_{a} h_{c d}\right)\left(\partial^{a} h^{c d}\right)-\frac{1}{2}\left(\partial d h^{d a}\right)\left(\partial^{c} h_{c a}\right)\right. \\
& \left.+\frac{1}{2}\left(\partial^{d} h\right)\left(\partial^{n} h a d-\frac{1}{2} \partial d h\right)\right\rangle \\
& =\left\langle-\frac{1}{4} h^{c d} \partial^{2} h_{c d}+\frac{1}{2} h^{d a} \partial_{d} \partial^{c} h_{c a}-\frac{1}{2} h^{a d} \partial_{a} \partial_{d} h\right. \\
& \left.+\frac{1}{4} h \partial^{2} h\right\rangle \\
& =\left\langle\frac{1}{2} h^{c d}\left(-\frac{1}{2} \partial^{2} h_{c d}+\partial^{a} \partial_{(c} h_{d) a}-\frac{1}{2} \partial_{c} \partial_{d} h\right)\right. \\
& -\frac{1}{4} h^{c u} \partial_{c} \partial d h+\frac{1}{4} h \partial^{2} h>
\end{aligned}
$$

The term in brackets in the first line is nothing sat the lncavised Einstein equation in vacuum:

$$
R_{a b}^{(1)}[h]=-\frac{1}{2} \partial^{2} h_{a b}+\partial^{c} \partial_{(a} h_{b) c}-\frac{1}{2} \partial_{a} \partial_{b} h=0
$$

The second lane com be written as the linearised Recce scalar, which alto vanishes in vacuum:

$$
\begin{aligned}
& R^{(1)}[h]=\eta^{a b} R_{a b}^{(1)}[h]=-\partial^{2} h+\partial^{a} \partial^{b} h_{a b}=0 \\
& \Rightarrow \partial^{2} h=\partial^{a} \partial^{b} h_{a b} .
\end{aligned}
$$

Included:

$$
\begin{aligned}
& \left\langle\eta^{a b} R_{a b}^{(2)}[h]\right\rangle=\left\langle-\frac{1}{4} h^{c d} \partial_{c} \partial_{d} h+\frac{1}{4} h \partial^{2} h\right\rangle \\
& =\left\langle-\frac{1}{4} h \partial^{c} \partial^{d} h_{c a}+\frac{1}{4} h \partial^{2} h\right\rangle=0
\end{aligned}
$$

Note: throughout this concise, we have integrated by pants multiple times. We are allowed to do this when computing averages, see the disunion around eq. (7.56)

Now we have to compute $\left\langle R_{a b}^{(2)}[h]\right\rangle$ in tens

$$
\text { of } \bar{h}_{a b}=h_{a b}-\frac{1}{2} \eta_{a b} h \rightarrow h_{a b}=\bar{h}_{a b}-\frac{1}{2} \eta_{a b} \bar{h}
$$

Recall that we con ignore the total derivative in the second line in (7.48) when computing the average $<>$
The various terms in $R_{a b}^{(2)}[h]$ in tarns of $\overline{h a b}$ are:

$$
\begin{aligned}
& \text { - } h^{c d} \partial_{a} \partial_{b} h_{c d}=\left(\bar{h}^{c d}-\frac{1}{2} \eta^{c d} \bar{h}\right)\left(\partial_{a} \partial_{s} \bar{h}_{c d}-\frac{1}{2} \eta_{c d} \partial_{a} \partial_{b} \bar{h}\right) \\
& =\bar{h}^{c d} \partial_{a} \partial_{b} \bar{h}_{c d}-\bar{h}^{2} \partial_{a} \partial_{b} \bar{h}+\bar{h}^{2} \partial_{a} \partial_{b} \bar{h}^{2}=\bar{h}^{c d} \partial_{a} \partial_{b} \bar{h}_{c d}
\end{aligned}
$$

$\sin u \eta^{c d} \eta_{c d}=4$

$$
\begin{aligned}
& \text { - } h^{c d} \partial_{c} \partial_{a} h_{b d}=\left(\bar{h}^{c d}-\frac{1}{2} \bar{h}^{c d} \eta^{c d}\right)\left(\partial_{c} \partial_{a} \bar{h}_{b d}-\frac{1}{2} \eta_{b d} \partial_{c} \partial_{a} \bar{h}\right) \\
& =\bar{h}^{c d} \partial_{c} \partial_{a} \bar{h}_{b d}-\frac{1}{2} \bar{h}^{c} b \partial_{a} \partial_{c} \bar{h}-\frac{1}{2} \bar{h} \partial^{c} \partial_{a} \bar{h}_{b c}+\frac{1}{4} \bar{h} \partial_{b} \partial_{a} \bar{h} \\
& \Rightarrow h^{(d} \partial_{c} \partial_{(a} h_{b) d}=h^{(d} \partial_{c} \partial_{(a} \bar{h}_{b) d}-\frac{1}{2} \bar{h}^{c}\left(b \partial_{a} \partial_{c} \frac{4}{h}\right. \\
& -\frac{1}{2} \bar{h} \partial^{c} \partial_{(a} \bar{h}_{b) c}^{2}+\frac{1}{4} \bar{h} \partial_{a} \partial_{b} \bar{h} \\
& \text { - }\left(\partial_{a} h_{c d}\right)\left(\partial_{b} h^{c d}\right)=\left(\partial_{a} \bar{h}_{c d}-\frac{1}{2} \eta_{c d} \partial_{a} \bar{h}\right)\left(\partial_{b} \bar{h}^{c d}-\frac{1}{2} \eta^{c d} \partial_{b} \bar{h}\right) \\
& =\left(\partial_{a} \bar{h}_{c d}\right)\left(\partial_{b} \bar{h}^{c d}\right)-\frac{1}{2}\left(\partial_{a} \bar{h}\right)\left(\partial_{b} \bar{h}^{2}\right)-\frac{1}{2}\left(\partial_{a} \bar{h}\right)\left(\partial_{b} \bar{h}\right)+\left(\partial_{a} \bar{h}\right)\left(\partial_{b} \bar{h}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\partial_{a} \hbar_{c d}\right)\left(\partial_{b} \bar{h}^{c d}\right) \\
& \text { - }\left(\partial^{c} h^{d} b\right) \partial_{c} h_{d a}=\left(\partial^{c} \bar{h}_{b}^{d}-\frac{1}{2} \delta_{b}^{d} \partial^{c} \bar{h}\right)\left(\partial_{c} \bar{h}_{d_{a}}-\frac{1}{2} \eta_{d_{a}} \partial_{c} \bar{h}^{d}\right) \\
& =\left(\partial^{c} \bar{h}_{b}^{d}\right)\left(\partial_{c} \bar{h}_{d a}\right)-\frac{1}{2}\left(\partial^{c} \bar{h}_{a b}\right)^{2} \partial_{c} \bar{h}-\frac{1}{2}\left(\partial^{c} \bar{h}^{2}\right) \partial_{c} \bar{h}_{a b}^{2} \\
& +\frac{1}{4} \eta_{a b}\left(\partial^{\prime} h\right)\left(\partial_{c}{ }^{2} h\right) \\
& \text { - }\left(\partial^{c} h^{d}{ }_{b}\right)\left(\partial_{d} h_{c a}\right)=\left(\partial^{c} h_{b}^{d}-\frac{1}{2} \delta^{d} \partial^{\partial} \bar{h}\right)\left(\partial_{d} \bar{h}_{c a}-\frac{1}{2} \eta_{c a} \partial_{d} \bar{h}\right) \\
& =\left(\partial^{c} h_{b}^{d}\right)\left(\partial_{d} T_{c a}\right)-\frac{1}{2}\left(\partial_{a} h^{d}{ }_{b}^{2}\right) \partial_{d} T_{-\frac{1}{2}}\left(\partial^{c} \bar{h}\right) \partial_{b} T_{c a}^{2} \\
& +\frac{1}{4}\left(\partial_{a} \hbar\right)\left(\partial_{b} \hbar\right)^{2}= \\
& =\left(\partial^{c} \bar{h}_{b}^{d}\right)\left(\partial_{d} \bar{h}_{c a}\right)-\left(\partial^{c} \bar{h}\right) \partial_{a} \bar{h}_{b) c}+\frac{1}{4}\left(\partial_{a} \bar{h}\right)\left(\partial_{b} \bar{h}\right) \\
& \Rightarrow\left(\partial^{c} h^{d} b\right) \partial_{i c h d] a} \\
& =\left(\partial^{c} h^{d} b\right) \partial_{[c} \bar{h}_{d] a}-\frac{1}{2}\left(\partial^{c} \bar{h}^{2}\right)\left[\partial_{c} \bar{h}_{a b}-\partial_{(a} \bar{h}_{b) c}\right] \\
& -\frac{1}{8}\left[\left(\partial_{a} \bar{h}\right)\left(\partial_{b} \bar{h}\right)^{2}-\eta_{a b}(\partial c \bar{h})\left(\partial_{c} \bar{h}\right)\right] \\
& \text { - }\left(\partial^{c} h\right)\left(\partial_{c} h_{a b}\right)=-\left(\partial^{c} \bar{h}\right)\left(\partial_{c} \bar{h}_{a b}-\frac{1}{2} \eta_{a b} \partial_{c} \bar{h}\right) \\
& =-(\partial c \bar{h})\left(\partial_{c} \bar{h}_{a b}\right)+\frac{1}{2} \eta_{a b}\left(\partial^{c} \bar{h}\right)\left(\partial_{c} \bar{h}\right) \\
& \text { - }\left(\partial_{c} h^{c d}-\frac{1}{2} \partial^{d} h\right) \partial_{(a} h_{b) d}=\left(\partial_{c} \bar{h}^{c d}\right)\left(\partial_{\left(a h_{b}\right) d}-\frac{1}{2} \eta_{d(a} \partial_{b} \bar{h}\right) \\
& \left.=\left(\partial_{c} \bar{h}^{c d}\right) \partial_{(a} \bar{h}_{b) d}-\frac{1}{2}\left(\partial^{c} \bar{h}_{c(a}\right) \partial_{b}\right) \bar{h}^{2}
\end{aligned}
$$

Putting everything together,

$$
\begin{aligned}
& \left\langle R^{(2)}{ }_{a}[h]\right\rangle= \\
& =\left\langle\frac{1}{2} \bar{h}^{c d} \partial_{a} \partial_{b} \bar{h}_{c d}\right. \\
& -\bar{h}^{(d} \partial_{c} \partial_{a} \bar{h}_{b) d}+\frac{1}{2} \bar{h}^{c}\left(\partial _ { a } \partial _ { c } \partial _ { c } \overline { h } _ { + } \frac { 1 } { 2 } \overline { h } \partial ^ { c } \partial _ { (a } \left(\bar{h}_{b) c}-\frac{1}{4} \bar{h} \partial_{a} \partial_{b} \bar{h}\right.\right. \\
& +\frac{1}{4}\left(\partial_{n} \bar{h}_{c d}\right)\left(\partial_{b} \bar{h}^{d d}\right) \\
& +\left(\partial^{c} h^{d} b\right) \partial_{[c} \bar{h}_{a] a}-\frac{1}{2}\left(\partial^{c} \bar{h}\right)\left[\partial_{c} \bar{c}_{a b}-\partial_{(a,} W_{b} b c\right] \\
& -\frac{1}{8}\left[\left(\partial_{a} \bar{h}\right)\left(\partial_{b} \bar{h}\right)-\eta_{a b}\left(\partial^{\sigma} \bar{h}\right)\left(\partial_{c} \bar{h}\right)\right] \\
& -\frac{1}{4}\left[-(\partial \subset \bar{h})\left(\partial_{c} \bar{h}_{a b}\right)+\frac{1}{2} \eta_{a b}\left(\partial^{\prime} \hbar\right)(\partial c h)\right] \\
& \left.-\left[\left(\partial \hat{h}^{c}\right)^{d} \partial_{c} \bar{h}_{b) d}-\frac{1}{2}\left(\partial^{c} \bar{h}_{c}(f) \partial_{b}\right) \bar{h}\right]\right\rangle \\
& =\left\langle-\frac{1}{4}\left(\partial_{a} \bar{h}^{c d}\right)\left(\partial_{b} \bar{h}_{c d}\right)+\frac{1}{8}\left(\partial_{a} \bar{h}\right)\left(\partial_{b} \bar{h}\right)\right. \\
& \left.-\frac{1}{4}\left(\partial^{c} \bar{h}\right)\left(\partial_{c} \bar{h}_{a b}\right)+\frac{1}{2}\left(\partial^{c} h^{d} b\right)\left(\partial c \bar{h}_{d_{a}}\right)-\frac{1}{2}\left(\partial^{c} \bar{h}^{d} b\right)\left(\partial_{\alpha} \bar{h}_{c a}\right)\right\rangle
\end{aligned}
$$

Now we use the hincarised Einstam eggs: in vacuum:

$$
\begin{aligned}
& -\frac{1}{2} \partial^{c} \partial_{c} \bar{h}_{a b}+\partial^{c} \partial_{c a} T_{b) c}-\frac{1}{2} \eta_{a b} \partial^{c} \partial^{d} \bar{h}_{c l}=0 \\
& -\frac{1}{2} \partial^{2} \bar{h}^{2}-\partial^{c} \partial^{d} \bar{h}_{b c}=0 \Rightarrow \partial^{2} \bar{h}^{2}=-2 \partial^{c} \partial^{d} \bar{h}_{c d}
\end{aligned}
$$

Then the first tern nm the second line can be written as

$$
\begin{aligned}
& \left\langle-\frac{1}{4}\left(\partial^{\prime} \bar{h}\right)\left(\partial_{c} \bar{h}_{a b}\right)\right\rangle=\left\langle+\frac{1}{4}\left(\partial^{2} \bar{h}^{\prime}\right) \bar{h}_{a b}\right\rangle= \\
& =\left\langle-\frac{1}{2}\left(\partial^{c} \partial^{d} \bar{h}_{c d}\right) \bar{h}_{a b}\right\rangle=\left\langle+\frac{1}{2}\left(\partial_{c} h^{d d}\right) \partial_{d} \bar{h}_{a b}\right\rangle
\end{aligned}
$$

The second term in the secound lime gues

$$
\begin{aligned}
& \left\langle\frac{1}{2}\left(\partial^{c} \bar{h}_{d b}\right)\left(\partial_{c} \bar{h}_{a}^{d}\right)\right\rangle=\left\langle-\frac{1}{2}\left(\partial^{2} h_{b d}\right) h^{d}{ }_{a}\right\rangle \\
= & \left\langle\left(-\partial^{e} \partial_{c b} \bar{h}_{d) c}+\frac{1}{2} \eta_{b d} \partial^{e} \partial^{f} \bar{h}_{e g}\right) \bar{h}_{a}^{d}\right\rangle \\
= & \left\langle\left(\partial_{c b} \bar{h}_{d) c}\right) \partial^{c} \hbar_{a}^{d}+\frac{1}{2}\left(\partial^{c} \partial^{d} \bar{h}_{c d}\right) \bar{h}_{a b}\right\rangle \\
= & \left\langle\frac{1}{2}\left(\partial b h_{d c}\right) \partial^{c} \bar{h}_{a}^{d}+\frac{1}{2}\left(\partial d h_{b c}\right)\left(\partial^{c} \bar{h}_{a}^{d}\right)-\right. \\
& \left.-\frac{1}{2}\left(\partial^{d} \bar{h}_{c d}\right) \partial^{c} \bar{h}_{a b}\right\rangle \\
= & \left\langle\frac{1}{2}\left(\partial_{c} h^{d}\right)\left(\partial_{b} h_{a d}\right)+\frac{1}{2}\left(\partial_{c} h_{b d}\right)\left(\partial^{d} h_{a}^{c}\right)\right. \\
& \left.-\frac{1}{2}\left(\partial^{d} \bar{h}_{c d}\right)\left(\partial^{c} \bar{h}_{a b}\right)\right\rangle
\end{aligned}
$$

Therefre, the tamss in the scound line of (*) gue:

$$
\begin{aligned}
\langle & +\frac{1}{2}\left(\partial_{c} \bar{h}^{c d}\right) \partial_{d} T_{a b} \\
& +\frac{1}{2}\left(\partial_{c} \bar{h}^{c d}\right)\left(\partial_{c b} \bar{h}_{c a) d}\right)+\frac{1}{2}\left(\partial_{c} \bar{h}_{b d}\right)\left(\partial^{d} \bar{h}_{a}^{c}\right)-\frac{1}{2}\left(\partial^{d} \bar{h}_{c a}\right)\left(\partial^{c} h_{a b}\right) \\
& \left.-\frac{1}{2}\left(\partial^{2} h^{d} b\right)\left(\partial_{d} \bar{h}_{c a}\right)\right\rangle \\
= & \left\langle\frac{1}{2}\left(\partial_{c} \bar{h}^{c d}\right) \partial_{\left.\left(b h_{a)}\right)\right\rangle}\right.
\end{aligned}
$$

Note that hae e we have symmontinsel the indices (a, b) because $R_{a b}^{(2)}[h]$ is symmenctric in (a, b) Ha, we get:

$$
\begin{aligned}
&\left\langle R_{a b}^{(2)}[h]\right\rangle= \\
&=\left\langle-\frac{1}{4}\left(\partial_{a} \bar{h}^{c d}\right)\left(\partial_{b} \bar{h}_{c d}\right)+\frac{1}{8}\left(\partial_{a} \bar{h}^{\prime}\right)\left(\partial_{b} \bar{h}\right)\right. \\
&\left.+\frac{1}{2}\left(\partial_{c} \bar{h}^{(d)}\right) \partial_{(a} \bar{h}_{b) d}\right\rangle
\end{aligned}
$$

and hance the stans tensor is:

$$
\begin{aligned}
& \left\langle t_{a b}[h]\right\rangle=-\frac{1}{8 \pi G}\left\langle R_{a b}^{(2)}[h]\right\rangle \\
& \left.=\frac{1}{32 \pi G}\left\langle\left(\partial_{a} \bar{h}^{c d}\right)\left(\partial_{b} \bar{h}_{c d}\right)-\frac{1}{2}\left(\partial_{a} \bar{h}\right)\left(\partial_{b} \bar{h}\right)+2\left(\partial_{c} \bar{h}^{c d}\right) \partial_{(a} \bar{L}_{b}\right) d\right\rangle
\end{aligned}
$$

which is the resined result

NOTE: this pubbem (9) is van hand and you should NOT expect that a question similar to this one will be asked in the exam.
This pubbem is only to illustrate how one does this type of calculations and you can practise playing with the inclines.
(10)

$$
\bar{h}_{a b}=\operatorname{Re}\left[H_{a b} e^{i k \cdot x}\right]=H_{a b} \cos (k \cdot x)
$$

with $H_{a b}=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & H_{+} & H_{x} & 0 \\ 0 & H_{x} & -H_{+} & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$ and $K^{a}=\omega(1,0,0,1)$
Notice that $h_{a b}$ is aheady in the transverse and tracker gauge:

$$
\partial^{c} \bar{h}_{c a}=0, \quad \bar{h}=0
$$

In this gauge, the expmenion for $\left\langle t_{a b}\right\rangle$ simplifies consicluably:

$$
\begin{aligned}
& \left\langle t_{a b}\right\rangle=\frac{1}{32 \pi G}\left\langle\left(\partial_{a} \bar{h}_{c d}\right)\left(\partial_{b} \bar{h}^{c d}\right)\right\rangle \\
& =+\frac{1}{32 \pi \sigma} k_{a} k_{b} H_{c d} H^{c d}\left\langle\cos ^{2}(k \cdot x)\right\rangle
\end{aligned}
$$

Note: $\left\langle\cos ^{2}(K \cdot x)\right\rangle=\frac{1}{2}$

$$
H_{\text {cd }} H^{c d}=2\left(H_{+}^{2}+H_{x}^{2}\right)
$$

$K_{a}=\omega(-1,0,0,1)$, the minus sign coming
form lowering the indene of K^{n}.

Thunfore, we get:

$$
\left\langle t_{a b}\right\rangle=\frac{1}{32 \pi G} \omega^{2}\left(H_{+}^{2}+H_{x}^{2}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right)
$$

(11) Given the setup of the problem, the mans density of the system is:

$$
\rho=M\left[\delta(x) \delta(y) \delta\left(z-z_{1}(t)\right)+\delta(x) \delta(y) \delta\left(z-z_{2}(t)\right)\right]
$$

with $z_{1}(t)=\frac{L}{2}+\delta z(t), z_{2}(t)=-\frac{L}{2}-\delta z(t)$ and $\delta z(t)=A \operatorname{\omega os}(\omega t)$.
The only nom- vanishing component of the quadrupole moment terse of the energy clansity is:

$$
I_{z z}=\int d^{3} x \rho z^{2}=2 M\left(\frac{L}{2}+A \cos (\omega t)\right)^{2}
$$

To compunte the power, we need the tracclas part of the quadrupole moment tensor:

$$
Q_{i j}=I_{i j}-\frac{1}{3} \delta_{i j} I_{k k}
$$

with $I_{k k}=\sum_{k=1}^{3} I_{k k}=I_{x x}+I_{y y}+I_{z z}=I_{z z}$

$$
\Rightarrow Q_{i j}=\left(\begin{array}{ccc}
-\frac{2 M}{3}\left(\frac{L}{2}+A \cos (\omega t)\right)^{2} & 0 & 0 \\
0 & -\frac{2 M}{3}\left(\frac{L}{2}+A \cos (\omega t)\right)^{2} & 0 \\
0 & 0 & \frac{4 M}{3}\left(\frac{L}{2}+A \cos (\omega t)\right)^{2}
\end{array}\right)
$$

Fram this we compunte:

$$
\begin{aligned}
& \dddot{Q}_{i j}=\frac{2}{3} M A \omega^{3} \sin (\omega t)[L+8 A \cos (\omega t)]\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 2
\end{array}\right) \\
& \dddot{Q}_{i j} \dddot{Q}^{i j}=\frac{8}{3} A^{2} M^{2} \omega^{6} \sin ^{2}(\omega t)(L+8 A \cos (\omega t))^{2} \\
& \left\langle\dddot{Q}_{i j} \ddot{Q}^{i j}\right\rangle=\frac{8}{3} A^{2} M^{2} \omega^{6}\left[L^{2}\left\langle\sin ^{2}(\omega t)\right\rangle+\right. \\
& +16 L A\left\langle\sin ^{2}(\omega t) \omega \cos (\omega t)\right\rangle \\
& \left.+16 A^{2}\left\langle\sin ^{2}(2 \omega t)\right\rangle\right] \\
& =\frac{8}{3} A^{2} M^{2} \omega^{6}\left[\frac{L^{2}}{2}+8 A^{2}\right]=\frac{4}{3} M^{2} A^{2} L^{2} \omega^{6}\left(1+\frac{16 A^{2}}{L^{2}}\right)
\end{aligned}
$$

whan we have uned that

$$
\begin{aligned}
& \left\langle\sin ^{2}(\omega t)\right\rangle=\frac{1}{2} \\
& \left.\left.\left\langle\sin ^{2}\right| \omega t\right) \cos (\omega t)\right\rangle=\frac{1}{4}[\langle\cos (\omega t)\rangle-\langle\cos (3 \omega t)\rangle]=0
\end{aligned}
$$

$$
\left\langle\sin ^{2}(2 \omega t)\right\rangle=\frac{1}{2}
$$

Using the quadrupole formula we find:

$$
\begin{aligned}
\langle P\rangle & =\frac{G}{5}\left\langle\dddot{Q}_{i j} \dddot{Q}^{i j}\right\rangle \\
& =\frac{4 G}{15} M^{2} A^{2} L^{2} \omega^{6}\left(1+\frac{16 A^{2}}{L^{2}}\right)
\end{aligned}
$$

