SOLUTIONS: CW3
(1) Only the scound and the fourth malue sasse In the first one, the fue inchics clon't match. In the thind copassion the index k appeass as a demmny indere on the left while it's a fuee inclex on the night. In the fifth, the pre inclias donit match and k appeass as both a feer and a dumany indere on the r.h.s.
(2) $G_{i j}: G_{11}, G_{12}, G_{21}, G_{22}$

$$
\begin{aligned}
A^{i} B_{i}= & A^{1} B_{1}+A^{2} B_{2} \\
\Gamma_{j k}^{i}: & \Gamma_{11}^{1}, \Gamma_{12}^{1}, \Gamma_{21}^{1}, \Gamma_{22}^{1}, \Gamma_{111}^{2}, \Gamma_{12,}^{2} \Gamma_{21,}^{2} \Gamma_{22}^{2} \\
\Gamma_{i j}^{i}: & \Gamma_{11}^{1}+\Gamma_{21}^{2}, \Gamma_{12}^{1}+\Gamma_{22}^{2} \\
R_{j k c}^{i}: & R_{111}^{1}, R_{112}^{1}, R_{121}^{1}, R_{122}^{1} \\
& R_{211}^{1}, R_{212}^{1}, R_{221}^{1}, R_{222}^{1} \\
& R_{111}^{2}, R_{112}^{2}, R_{121}^{2}, R_{122}^{2} \\
& R_{211}^{2}, R_{212}^{2}, R_{221}^{2}, R_{222}^{2} \\
R_{i}^{i}= & R_{1}^{1}+R_{2}^{2}
\end{aligned}
$$

(3) The first part is covered in the lectures.

- Timelita: $\bar{A} \cdot \bar{A}<0$
- Spaculike: $\bar{A} \cdot \bar{A}>0$
- Null: $\bar{A} \cdot \bar{A}=0$

For the second part,
$\bar{A}:$ timelile $\Rightarrow \bar{A} \cdot \bar{A}=-\left(A^{\circ}\right)^{2}+|\underline{A}|^{2}<0$
$\Rightarrow|A|<A^{0}$ and $A^{0}>0$ w log
He $|\underline{A}|=\sqrt{\left(A^{1}\right)^{2}+\left(A^{2}\right)^{2}+\left(A^{3}\right)^{2}}$ in the usual nomen of a 3 -vector.
$\bar{B}:$ mull $\Rightarrow \vec{B} \cdot \bar{B}=-\left(B^{0}\right)^{2}+|\underline{B}|^{2}=0 \Rightarrow B^{0}= \pm|\underline{B}|$
We can choose the + sign $\omega \log$.
Then,

$$
\begin{aligned}
\underline{A} \cdot \underline{B} & =-A^{0} \vec{B}^{0}+\underline{A} \cdot \underline{B}<-|\underline{A}||\underline{B}|+\underline{A} \cdot \underline{B}= \\
& =-|\underline{A}||\underline{B}|+|\underline{A}||\underline{B}| \cos \theta= \\
& =-|\underline{A}||\underline{B}|(1-\cos \theta) \\
\Rightarrow \underline{A} \cdot \underline{B} & <-|\underline{A}||\underline{B}|(1-\cos \theta)<0
\end{aligned}
$$

(4) If \bar{A} is a unit spacelike vector, them $|\bar{A}|=1$. It follows the $-\left(A^{0}\right)^{2}+4=1 \Rightarrow A^{0}= \pm \sqrt{3}$.
If \bar{A} and \bar{B} ane orthogonal, then

$$
\begin{aligned}
& \bar{A} \cdot \bar{B}=-3 A^{0}+2 B^{2}=0 \\
& \Rightarrow B^{2}=\frac{3}{2} A^{0}= \pm \frac{3 \sqrt{3}}{2}
\end{aligned}
$$

(5) a) $\bar{A} \cdot \bar{B}=\eta_{a b} A^{a} B^{b}$
$|\bar{A}|^{2}$ is invariant means that is the same in all reference panes, i.e., it is unchanged by a Looenty trans.
b) Shown in the lectures.
c) $|\bar{A}|^{2},|\bar{B}|^{2}>0, \quad \bar{A} \cdot \vec{B}=0$

$$
\begin{aligned}
(\bar{A}+\bar{B})^{2} & =|\bar{A}|^{2}+|\bar{B}|^{2}+2 \bar{A} \vec{B}^{0} \\
& =|\bar{A}|^{2}+|\bar{B}|^{2}>0
\end{aligned}
$$

(6) Since \bar{A} and \bar{B} are tinnelike,

$$
|\bar{A}|^{2}=-\left(A^{0}\right)^{2}+\left(A^{1}\right)^{2}<0, \quad|\bar{B}|^{2}=-\left(B^{0}\right)^{2}+\left(B^{1}\right)^{2}<0
$$

Hence, $A^{1}<A^{0}$ and $B^{1}<B^{0}$ since $A^{0}, A^{1}, B^{0}, B^{1}$ are all positive. Adding,

$$
\left(A^{1}+B^{1}\right)^{2}<\left(A^{0}+B^{0}\right)^{2}
$$

Hence,

$$
(\bar{A}+\bar{B})^{2}=-\left(A^{0}+B^{0}\right)^{2}+\left(A^{1}+B^{1}\right)^{2}<0
$$

(7) Since \bar{A} is a 4-vecton, its transformation uncle

Lorentz transf is given by

$$
A^{10}=\gamma\left(A^{0}-v A^{1}\right), A^{11}=\gamma\left(A^{1}-v A^{0}\right), A^{12}=A^{2}, A^{13}=A^{3}
$$

The nom of \bar{A}^{\prime} is given by

$$
\begin{aligned}
& \left.\mid \bar{A}^{\prime}\right)^{2}=-\left(A^{10}\right)^{2}+\left(A^{11}\right)^{2}+\left(A^{12}\right)^{2}+\left(A^{13}\right)^{2}= \\
& =-\gamma^{2}\left(A^{0}-v A^{1}\right)^{2}+\gamma^{2}\left(A^{1}-v A^{0}\right)^{2}+\left(A^{2}\right)^{2}+\left(A^{3}\right)^{2} \\
& =\gamma^{2}\left(1-v^{2}\right)\left(-\left(A^{0}\right)^{2}+\left(A^{1}\right)^{2}\right)+\left(A^{2}\right)^{2}+\left(A^{3}\right)^{2} \\
& =-\left(A^{0}\right)^{2}+\left(A^{1}\right)^{2}+\left(A^{2}\right)^{2}+\left(A^{3}\right)^{2}
\end{aligned}
$$

since $\gamma^{2}\left(1-v^{2}\right)=1$
(8)

The relation between Cartesian and polar coordinates is

$$
x=r \cos \theta, y=r \sin \theta \Rightarrow r=\sqrt{x^{2}+y^{2}}, \theta=\arctan \frac{y}{x}
$$

Taking diffacutials,

$$
\begin{aligned}
& d x=\cos \theta d r-r \sin \theta d \theta \\
& d y=\sin \theta d r+r \cos \theta d \theta
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
d s^{2} & =d x^{2}+d y^{2}= \\
& =(\cos \theta d r-r \sin \theta d \theta)^{2}+(\sin \theta d r+r \cos \theta d \theta)^{2} \\
& =d r^{2}+r^{2} d \theta^{2}
\end{aligned}
$$

$$
\begin{aligned}
& F_{t r}=-F_{r t}=-\frac{Q}{r^{2}} \\
& T_{a b}=F_{a b} F_{b t}^{c}-\frac{1}{4} g_{a b} F_{c d} F^{c d} \\
& \eta=-d t^{2}+d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) \\
& \rightarrow F^{t r}=-F^{r t}=\eta^{t a} \eta^{r b} F_{a b}=\left\{\eta^{t t} \eta^{r r} F_{t r}=(-1) F_{t r}=\frac{Q}{r^{2}}\right. \\
& F_{a b} F^{a b}=F_{t r} F^{t r}+F_{r t} F^{r t}=-\frac{2 Q^{2}}{r^{4}}
\end{aligned}
$$

The first team org has ti and or components. Indeed,

$$
\begin{aligned}
& F_{t c} F_{r}^{c}=F_{t r} F_{r}^{r}=F_{t r} F_{r b} \eta^{b r}=F_{t r} F_{r r} \eta^{r r}=0 \\
& F_{t a} F_{t}^{a}=F_{t r} F_{t}^{r}=F_{t r} F_{t r} \eta^{r r}=+\frac{Q^{2}}{r^{4}} \\
& F_{r a} F_{r}^{a}=F_{t e w} F_{r t} F_{r}^{t}=F_{r t} F_{r t} \eta^{t t}=-\frac{Q^{2}}{r^{4}}
\end{aligned}
$$

Therefore we get:

$$
\begin{aligned}
& T_{t t}=F_{t a} F_{t}^{a}-\frac{1}{4} \eta_{t t} F^{2}=\frac{Q^{2}}{r^{4}}-\frac{1}{4}(-1)\left(-\frac{2 Q^{2}}{r^{4}}\right)=\frac{Q^{2}}{2 r^{4}} \\
& T_{r r}=F_{r a} F_{r}^{a}-\frac{1}{4} \eta_{r r} F^{2}=-\frac{Q^{2}}{r^{4}}-\frac{1}{4}\left(-\frac{2 Q^{2}}{r^{4}}\right)=-\frac{Q^{2}}{2 r^{4}} \\
& T_{\theta \theta}=-\frac{1}{4} \eta_{\theta \theta} F^{2}=-\frac{1}{4}\left(r^{2}\right)\left(-\frac{2 Q^{2}}{r^{4}}\right)=+\frac{Q^{2}}{2 r^{2}} \\
& T_{\phi \phi}=\sin ^{2 \theta} T_{\theta \theta} \\
& T=T_{a}^{a}=\eta^{a b} T_{a b}=\eta^{t t} T_{t t}+\eta^{r r} T_{r r}+\eta^{\theta \theta} T_{\theta \theta}+\eta^{4 \phi} T_{\phi \phi}= \\
& \\
& =(-1)\left(\frac{Q^{2}}{2 r^{4}}\right)+\left(-\frac{Q^{2}}{2 r^{4}}\right)+\frac{1}{r^{2}}\left(\frac{Q^{2}}{2 r^{2}}\right)+\frac{1}{r^{2} \sin ^{2} \theta}\left(\frac{Q^{2}}{2 r^{2}} \sin ^{2} \theta\right)=0
\end{aligned}
$$

(1) Question: Geometry

- Consider the object $F_{i j}=\partial_{i} A_{j}-\partial_{j} A_{i}$, whee A_{i} is a $(0,1)$ tensor. Compute the transformation of $F_{i j}$ under a change of coonclinates. $x^{a}=x^{a}\left(x^{1 b}\right)$. Is $F_{i j}$ a telson?

Solution:
Since A_{i} is a terror, it transforms as

$$
A_{i}=\frac{\partial x^{i j}}{\partial x^{i}} A_{j}^{\prime}
$$

as for the partial derivatives one has,

$$
\frac{\partial}{\partial x^{i}}=\frac{\partial x^{1 j}}{\partial x^{i}} \frac{\partial}{\partial x^{\prime j}}
$$

Putting those two results together, we get

$$
\begin{aligned}
F_{i j} & =\partial_{i} A_{j}-\partial_{j} A_{i} \\
& =\frac{\partial x^{\prime k}}{\partial x^{i}} \frac{\partial}{\partial x^{k}}\left(\frac{\partial x^{l}}{\partial x^{j}} A_{l}^{\prime}\right)-\frac{\partial x^{\prime p}}{\partial x^{j}} \frac{\partial}{\partial x^{i p}}\left(\frac{\partial x^{1 q}}{\partial x^{i}} A_{q}^{\prime}\right) \\
& =\frac{\partial x^{k}}{\partial x^{i}}\left[\frac{\partial^{2} x^{\prime l}}{\partial \dot{x}^{k} \partial x^{j}} A_{l}^{\prime}+\frac{\partial x^{l e}}{\partial x^{j}} \frac{\partial}{\partial x^{k}} A_{l}^{\prime}\right]
\end{aligned}
$$

$$
-\frac{\partial x^{1 p}}{\partial x^{j}}\left[\frac{\partial^{2} x^{1 q}}{\partial x^{p} \partial x^{i}} A_{q}^{\prime}+\frac{\partial x^{\prime q}}{\partial x^{i}} \frac{\partial}{\partial x^{1 p}} A_{q}^{\prime}\right]
$$

The first terms on each line cancel. To see this, ones realises that they ane equal to

$$
\begin{aligned}
& \frac{\partial x^{\prime k}}{\partial x^{i}} \frac{\partial}{\partial x^{\prime k}}\left(\frac{\partial x^{l}}{\partial x^{j}}\right) A_{l}^{\prime}=\frac{\partial^{2} x^{\prime l}}{\partial x^{i} \partial x^{j}} A_{e}^{\prime} \\
& \frac{\partial x^{\prime p}}{\partial x^{j}} \frac{\partial}{\partial x^{\prime p}}\left(\frac{\partial x^{\prime q}}{\partial x^{i}}\right) A_{q}^{\prime}=\frac{\partial^{2} x^{q}}{\partial x^{j} \partial x^{i}} A_{q}^{\prime}
\end{aligned}
$$

Therefore, one is left with,

$$
\begin{aligned}
F_{i j} & =\frac{\partial x^{\prime k}}{\partial x^{i}} \frac{\partial x^{\prime l}}{\partial x^{j}} \frac{\partial A_{e}^{\prime}}{\partial x^{\prime k}}-\frac{\partial x^{1 p}}{\partial x^{j}} \frac{\partial x^{\prime q}}{\partial x^{i}} \frac{\partial}{\partial x^{\prime p}} A_{q}^{\prime} \\
& =\frac{\partial x^{\prime k}}{\partial x^{i}} \frac{\partial x^{l e}}{\partial x^{j}}\left(\frac{\partial A_{e}^{\prime}}{\partial x^{\prime k}}-\frac{\partial A_{k}^{\prime}}{\partial x^{l e}}\right) \\
& =\frac{\partial x^{\prime k}}{\partial x^{i}} \frac{\partial x^{\prime l}}{\partial x^{j}} F_{e k}^{\prime}
\end{aligned}
$$

Thupfere, $F_{i j}$ transforms as a $(0,2)$ tensor.

