(3) Under Galilean transf.

$$
t^{\prime}=t, \quad x^{\prime}=x-v t \text { or } t=t^{\prime}, x=x^{\prime}+v t
$$

Hence,

$$
\begin{aligned}
\frac{\partial}{\partial t} & =\frac{\partial t^{\prime}}{\partial t} \frac{\partial}{\partial t^{\prime}}+\frac{\partial x^{\prime}}{\partial t} \frac{\partial}{\partial x^{\prime}}=\frac{\partial}{\partial t^{\prime}}-v \frac{\partial}{\partial x^{\prime}} \\
\frac{\partial^{2}}{\partial t^{2}} \phi & =\frac{\partial}{\partial t}\left(\frac{\partial \phi}{\partial t}\right)=\left(\frac{\partial}{\partial t^{\prime}}-v \frac{\partial}{\partial x^{\prime}}\right)\left(\frac{\partial \phi}{\partial t^{\prime}}-v \frac{\partial \phi}{\partial x^{\prime}}\right)= \\
& =\frac{\partial^{2} \phi}{\partial t^{\prime 2}}-2 v \frac{\partial^{2} \phi}{\partial t^{\prime} \partial x^{\prime}}+v^{2} \frac{\partial^{2} \phi}{\partial x^{\prime 2}}
\end{aligned}
$$

since $\frac{\partial^{2} \phi}{\partial t^{\prime} \partial x^{\prime}}=\frac{\partial^{2} \phi^{\prime}}{\partial x^{\prime} \partial t^{\prime}}$
Similarly,

$$
\frac{\partial}{\partial x}=\frac{\partial t^{\prime}}{\partial x} \frac{\partial}{\partial t^{\prime}}+\frac{\partial x^{\prime}}{\partial x} \frac{\partial}{\partial x^{\prime}}=\frac{\partial}{\partial x^{\prime}} \Rightarrow \frac{\partial^{2} \phi}{\partial x^{2}}=\frac{\partial^{2} \phi}{\partial x^{\prime 2}}
$$

Hence,

$$
\begin{aligned}
\frac{\partial^{2} \phi}{\partial x^{2}}-\frac{1}{c^{2}} \frac{\partial^{2} \phi}{\partial t^{2}} & =\frac{\partial^{2} \phi}{\partial x^{12}}-\frac{1}{c^{2}}\left(\frac{\partial^{2} \phi}{\partial t^{2}}-2 v \frac{\partial^{2} \phi}{\partial t^{1} \partial x^{\prime}}+v^{2} \frac{\partial^{2} \phi}{\partial x^{12}}\right) \\
& \neq \frac{\partial^{2} \phi}{\partial x^{12}}-\frac{1}{c^{2}} \frac{\partial^{2} \phi}{\partial t^{12}}
\end{aligned}
$$

$\Rightarrow$ the wave equation is not invariant under Galilean transf.

Under Loments transf we have:

$$
\frac{\partial}{\partial t}=\gamma\left(\frac{\partial}{\partial t^{\prime}}-v \frac{\partial}{\partial x^{\prime}}\right), \frac{\partial}{\partial x}=\gamma\left(\frac{\partial}{\partial x^{\prime}}-\frac{v}{c^{2}} \frac{\partial}{\partial t^{\prime}}\right)
$$

Hence,

$$
\begin{aligned}
\frac{\partial^{2} \phi}{\partial t^{2}} & =\gamma^{2}\left(\frac{\partial}{\partial t^{\prime}}-v \frac{\partial}{\partial x^{\prime}}\right)\left(\frac{\partial \phi}{\partial t^{\prime}}-v \frac{\partial \phi}{\partial x^{\prime}}\right)= \\
& =\gamma^{2}\left(\frac{\partial^{2} \phi}{\partial t^{\prime 2}}-2 v \frac{\partial^{2} \phi}{\partial t^{\prime} \partial x^{\prime}}+v^{2} \frac{\partial^{2} \phi}{\partial x^{\prime 2}}\right) \\
\frac{\partial^{2} \phi}{\partial x^{2}} & =\gamma^{2}\left(\frac{\partial}{\partial x^{\prime}}-\frac{v}{c^{2}} \frac{\partial}{\partial t^{\prime}}\right)\left(\frac{\partial \phi}{\partial x^{\prime}}-\frac{v}{c^{2}} \frac{\partial \phi}{\partial t^{\prime}}\right)= \\
& =\gamma^{2}\left(\frac{\partial^{2} \phi}{\partial x^{\prime 2}}-\frac{2 v}{c^{2}} \frac{\partial^{2} \phi}{\partial t^{\prime} \partial x^{\prime}}+\frac{v^{2}}{c^{4}} \frac{\partial^{2} \phi}{\partial t^{\prime 2}}\right) \\
\Rightarrow \frac{\partial^{2} \phi}{\partial x^{2}}-\frac{1}{c^{2}} \frac{\partial^{2} \phi}{\partial t^{2}} & =\gamma^{2}\left(1-\frac{v^{2}}{c^{2}}\right)\left(\frac{\partial^{2} \phi}{\partial x^{\prime 2}}-\frac{1}{c^{2}} \frac{\partial^{2} \phi}{\partial t^{12}}\right)= \\
& =\frac{\partial^{2} \phi}{\partial x^{\prime 2}}-\frac{1}{c^{2}} \frac{\partial^{2} \phi}{\partial t^{12}}
\end{aligned}
$$

since $\gamma^{2}\left(1-\frac{v^{2}}{c^{2}}\right)=1$
Hence, the wave equation is inched invariant under Lorentz transf.
(4) Under a vectovial Galilean trans of.

$$
\underline{r}^{\prime}=\underline{r}-\underline{v} t, \quad t^{\prime}=t
$$

we have

$$
\frac{\partial}{\partial t}=\frac{\partial}{\partial t^{\prime}}-\underline{v} \cdot \nabla^{\prime}, \frac{\partial}{\partial x}=\frac{\partial}{\partial x^{\prime}}, \frac{\partial}{\partial y}=\frac{\partial}{\partial y^{\prime}}, \frac{\partial}{\partial z}=\frac{\partial}{\partial z^{\prime}}
$$

Thus,

$$
\begin{aligned}
\nabla^{2} \phi-\frac{1}{c^{2}} \frac{\partial^{2} \phi}{\partial t^{2}} & =\nabla^{\prime 2} \phi-\frac{1}{c^{2}}\left(\frac{\partial}{\partial t^{\prime}}-\underline{v} \cdot \nabla^{\prime}\right)\left(\frac{\partial \phi}{\partial t^{\prime}}-\underline{v} \cdot \nabla^{\prime} \phi\right) \\
& =\nabla^{\prime 2} \phi-\frac{1}{c^{2}}\left(\frac{\partial^{2} \phi}{\partial t^{\prime 2}}-2 \underline{v} \cdot \nabla^{\prime}\left(\frac{\partial \phi}{\partial t^{\prime}}\right)+\underline{v} \cdot \nabla^{\prime}\left(\underline{v} \cdot \nabla^{\prime} \phi\right)\right)
\end{aligned}
$$

$\Rightarrow$ the wave equation is not invariant.
(5) Starting form the Lorentz trans,

$$
t^{\prime}=\gamma\left(t-\frac{v x}{c^{2}}\right) \quad, \quad x^{\prime}=\gamma(x-v t)
$$

Adding and subtracting gives,

$$
c t^{\prime}-x^{\prime}=\varepsilon(c t-x), \quad c t^{\prime}+x^{\prime}=\varepsilon(c t+x)
$$

where $\varepsilon=\sqrt{\frac{1+v / c}{1-v / c}}$
To show that the combination of two LT's is another LT, consicles a fame $F^{\prime \prime}$ moving with respect to $F^{\prime}$ with velocity $N^{\prime}$. Than,

$$
c t^{\prime \prime}-x^{\prime \prime}=\varepsilon^{\prime}\left(c t^{\prime}-x^{\prime}\right), c t^{\prime \prime}+x^{\prime \prime}=\varepsilon^{\prime}\left(c t^{\prime}+x^{\prime}\right)
$$

with $\varepsilon^{\prime}=\sqrt{\frac{1+v^{\prime} / c}{1-v^{\prime} / c}}$. Hence,

$$
\begin{aligned}
c t^{\prime \prime}-x^{\prime \prime} & =\varepsilon^{\prime} \cdot \varepsilon(c t-x), c t^{\prime \prime}+x^{\prime \prime}=\varepsilon^{\prime} \cdot \varepsilon\left(c t^{\prime}+x^{\prime}\right) \\
\varepsilon^{\prime} \cdot \varepsilon & =\sqrt{\frac{1+v^{\prime} / c}{1-v^{\prime} / c}} \sqrt{\frac{1+v / c}{1-v / c}}= \\
& =\sqrt{\frac{1+v^{\prime \prime} / c}{1-v^{\prime \prime} / c}} \quad \text { where } v^{\prime \prime}=\frac{v+v^{\prime}}{1+\frac{v^{\prime} v^{\prime}}{c^{2}}} \\
\Rightarrow \varepsilon^{\prime} \cdot \varepsilon & =\varepsilon^{\prime \prime}
\end{aligned}
$$

(6) Covered in the lectures:

By the inverse Lorentz transf:

$$
\Delta t=\gamma\left(\Delta t^{\prime}+\frac{v \Delta x^{\prime}}{c^{2}}\right)=\gamma \Delta t^{\prime} \text { since } \Delta x^{\prime}=0
$$


(7) Coward in the lectures.

By the zorenty transf,

$$
\Delta x^{\prime}=\gamma(\Delta x-v \Delta t)=\gamma \Delta x \Rightarrow \Delta x=\frac{1}{\gamma} \Delta x^{\prime}
$$

since $\Delta t=0$ because the distance between the ends of the rod is measured simultaneously in $F$.

(8) The half-life of the pions is $\tau=1.8 \cdot 10^{-8} \mathrm{~s}$ in their nest fame. This means that of at $t=0$ the $N$ pions, after time $\tau$ thar will be only $N / 2$ prows left.
For an obseveen in the lab, the pions clock e runs slow because of time dilation. The half-life of moving pions in the lab is

$$
\Delta t=\gamma \Delta t^{\prime}=\frac{1.8 \cdot 10^{-8} \mathrm{~s}}{\sqrt{1-(0.996)^{2}}}=20.1 \cdot 10^{-8} \mathrm{~s} .
$$

Thus, in the lab pions bill travel

$$
\Delta x=v \Delta t=0.996 \cdot\left(3 \cdot 10^{8} \mathrm{~m} / \mathrm{s}\right) \cdot\left(20.1 \cdot 10^{-8} \mathrm{~s}\right)=60.2 \mathrm{~m}
$$

before half of them clecay.
Without time dilation, they would travel

$$
\Delta x=0.996 \cdot\left(3 \cdot 10^{8} \mathrm{~m} / \mathrm{s}\right) \cdot\left(1.8 \cdot 10^{-8} \mathrm{~s}\right)=5.4 \mathrm{~m}
$$

before half of them clecay.
(9) The train has length $\Delta x^{\prime}=L$ in its own reference frame $F^{\prime}$. From the lectures, we have seen that the length contraction is given by

$$
\Delta x=\frac{1}{\gamma} \Delta x^{\prime}
$$

So, for $\Delta x=L / 3$ we have

$$
\frac{L}{3}=\frac{1}{\gamma} L=\sqrt{1-\frac{v^{2}}{c^{2}}} L \Rightarrow \frac{v}{c}=\frac{2 \sqrt{2}}{3}
$$

(10) Spacetime diagram from the point of view of Joe:


Spacetime diagparn from Moe's point of view:


