University of London

## MTH4104

Solutions to exam instance

Introduction to Algebra
Main exam period 2022

## Question 1

(i) The elements of $R$ are integers, while the elements of $\mathbb{Z}_{m}$ are congruence classes.
(ii) Informally: the rules for addition and multiplication in $R$ and $\mathbb{Z}_{m}$ are "the same" apart from the difference between the way the elements are represented. That is, if $a \oplus b=c$ and $a \odot b=d$ in $R$, then $[a]_{m}+[b]_{m}=[c]_{m}$ and $[a]_{m}[b]_{m}=[d]_{m}$ in $\mathbb{Z}_{m}$. (To use terminology not introduced in this module, $R$ and $\mathbb{Z}_{m}$ are isomorphic.)
[A "what's the difference" question on this subject is unseen, but the answers are all very familiar bookwork facts.]

Question 2 Subtracting [3] ${ }_{14} X+[1]_{14}$ from both sides gives

$$
[5]_{14} X=[11]_{14}
$$

We can use the extended Euclidean algorithm to find $[5]_{14}$ :

$$
\begin{aligned}
& 4=14-2 \cdot 5 \\
& 1=5-1 \cdot 4
\end{aligned}
$$

so

$$
\begin{aligned}
1 & =5-4 \\
& =5-(14-2 \cdot 5) \\
& =-14+3 \cdot 5
\end{aligned}
$$

implying $[5]_{14}^{-1}=[3]_{14}$. Multiply both sides of the equation by this inverse:

$$
X=[3]_{14}[5]_{14} X=[3]_{14}[11]_{14}=[33]_{14}=[5]_{14}
$$

So the answer is $x=5$.
[This is a standard exercise, which has appeared on tutorial sheets with different numbers.]

Question 3 Reading the proof of Theorem 1.7(b), we see that clause (a) in the definition of partition, stating $\emptyset \notin P$, is not used in the proof. So $R$ will still be an equivalence relation. However, $\left\{[x]_{R}: x \in X\right\}$ need not equal $P$. For example, if $X=\{1\}$ and $P=\{\emptyset,\{1\}\}$, then $R=\{(1,1)\}$ and $\left\{[x]_{R}: x \in X\right\}=\{\{1\}\}$. So the answer is d.
[This kind of "what hypotheses are used in a proof, and what are the consequences" question is unseen.]

Question 4 False. This question is about leading zeroes in polynomials. One might think that $q$ could start with $0 x^{2}$ and thereby be equal to $p$, but in this case, the degree of $q$ would actually be less than 2 .
[A very similar question is in my formative quizzes.]

Question $5 R=\left\{a / 2^{n}: a \in \mathbb{Z}, n \in \mathbb{N}\right\}$ is a ring. The other choice $\{a / 2: a \in \mathbb{Z}\}$ is not a ring because it is not closed under multiplication: $1 / 2$ is an element but $1 / 2 \cdot 1 / 2=$ $1 / 4$ is not.

Is $R$ a ring with identity? True , $1 \in R$ is the identity element.
Is $R$ a skewfield? False, $3 \in R$ has no inverse in $R$ (in particular $1 / 3 \notin R$ ).
Is $R$ a commutative ring? True, multiplication of real numbers is commutative. [Other examples and nonexamples of subrings of $\mathbb{R}$ were gone over in lectures. These particular examples are unseen.]

## Question 6

(i) The identity element is $e=1 / 2$. Proof (not required): we have

$$
x \times \frac{1}{2}=6 x \cdot \frac{1}{2}-2\left(x+\frac{1}{2}\right)+1=3 x-2 x-1+1=x
$$

and also $1 / 2 \mathrm{a} x=x$ because a is visibly commutative.
(ii) Given $x \in G$, let $y=(4 x-1) /(12 x-4)$. We have $y \in G$, because $y=\frac{1}{3}+$ $(1 / 3) /(12 x-4)>\frac{1}{3}$. Now

$$
\begin{aligned}
x \propto y & =x \propto \frac{4 x-1}{12 x-4} \\
& =6 x \frac{4 x-1}{12 x-4}-2\left(x+\frac{4 x-1}{12 x-4}\right)+1 \\
& =(6 x-2) \frac{4 x-1}{12 x-4}-2 x+1 \\
& =\frac{4 x-1}{2}-2 x+1 \\
& =2 x-\frac{1}{2}-2 x+1 \\
& =\frac{1}{2}=e .
\end{aligned}
$$

Again, by commutativity, $y \mathfrak{a} x=e$ as well. Thus $y$ is the inverse of $x$, proving the inverse law.
[Proving group axioms is a standard exercise from lectures, tutorials, and coursework. This group operation is unseen.]

Question 7 This question uses standard algorithms from sections 6.2 and 6.3 of the notes which I will not rewrite here.
$f$ in cycle notation is (35)(46).

In two-line notation, $f^{-1}=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 5 & 6 & 3 & 4\end{array}\right)$ so $f^{-1} g=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 4 & 1 & 2 & 6\end{array}\right)$. So one should type in 354126 .
[This is a standard computation with many examples seen.]

Question $8 \quad H$ must contain the inverse of $x$ (by the inverse law), the identity element $e \in G$ (by the identity law: see the discussion in section 7.5 of the notes), and all powers of $x$ (by repeated use of the closure law). $H$ need not contain $x \diamond y$ for all $y \in G$ : all elements of the group $G$ can be written in this form, and proper subgroups exist.

By the above, any subgroup $H$ of $\mathbb{Z}_{13}^{\times}$containing [9] ${ }_{13}$ must contain all its positive powers, the identity $[1]_{13}$, and its inverse $[9]_{13}^{-1}=[3]_{13}$ : indeed, $H$ must contain $[9]_{13}^{k}$ for all $k \in \mathbb{Z}$. Since $[9]_{13}^{3}=[1]_{13}$, the set of all powers is $\left\{[1]_{13},[9]_{13},[3]_{13}\right\}$. By e.g. writing out a Cayley table one can confirm that this set is closed under multiplication, so it is a subgroup, and is therefore the smallest subgroup sought. So the answer as typed in is $\{1,9,3\}$.
[The first part is more or less bookwork. The second part is unseen, but a similar question for fields instead of groups was on the tutorial sheets.]

Question 9 False, the product of two nonzero elements of $R$ may be zero. An example is that $[2]_{4}[2]_{4}=[0]_{4}$ in $\mathbb{Z}_{4}$.

The coefficient of $x^{4}$ in the product $p q$ is $a d$.
No terms with $x^{k}$ for $k>4$ can appear in $p q$, so $\operatorname{deg}(p q)$ cannot exceed 4. By the first two parts of the question, the coefficient $a d$ of $x^{4}$ may be zero, so the degree may be strictly less than 4 . Indeed, in just the same way, all the products involved in all lower coefficients of $p q$ may vanish as well, so $p q$ may have any degree from 0 to 4 , or have undefined degree, which is this module's convention for what happens when $p q=0$.
[Examples of zero-divisors have been commented on. The second part is bookwork. The third part of the question is unseen but tutorial sheets have featured something similar.]

Question 10 [Note that this question has been replaced, and the replacement is in a separate PDF.] We must prove reflexivity, symmetry, and transitivity.
Reflexivity. Let $x \in \mathbb{C} \backslash\{0\}$. Then $x / x=1 \in \mathbb{R}$, so $(x, x) \in S$. Therefore $S$ is reflexive.
Symmetry. Let $x, y \in \mathbb{C} \backslash\{0\}$, and assume $(x, y) \in S$, that is, $y / x \in \mathbb{R}$. Also $y / x \neq 0$ because $y \neq 0$. Since $x / y=1 /(y / x)$ and the reciprocal of a nonzero real number is real, we have $x / y \in \mathbb{R}$. Therefore $(y, x) \in S$, so $S$ is symmetric.
Transitivity. Let $x, y, z \in \mathbb{C} \backslash\{0\}$, and assume $(x, y)$ and $(y, z)$ are in $S$, that is, $y / x, z / y \in$ $\mathbb{R}$. Since $z / x=(z / y) \cdot(y / x)$ and $\mathbb{R}$ is closed under multiplication, we have $z / x \in \mathbb{R}$. Therefore $(x, z) \in S$, so $S$ is transitive.
[A standard kind of proof. Lectures have featured examples of such proofs for similar relations.]

Question $11\{\{1,2\},\{3,4\},\{5,6\}\}$ is a partition of $X$. The point of this question, of course, is just distinguishing different kinds of brackets.
[This is a notational point I emphasised in lecture and in my formative quizzes.]

