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Question 1 [16 marks].

(a) Use Euclid’s Algorithm to find the greatest common divisor of 165 and 37.
Show all your working. [8]

(b) Use the Extended Euclidean Algorithm to compute the multiplicative inverse of
[37]165. Show all your working. [8]

Solution (a) We calculate

165 = 4 · 37 + 17
37 = 2 · 17 + 3
17 = 5 · 3 + 2
3 = 1 · 2 + 1
2 = 2 · 1 + 0,

so the greatest common divisor is 1.
(b) We may use the extended Euclidean algorithm to find an integer solution to
165x + 37y = 1. For this we unwind the calculations from Part (a):

1 = 1 · 3− 1 · 2 = 1 · 3− 1 · (17− 5 · 3)
= −1 · 17 + 6 · 3 = −1 · 17 + 6 · (37− 2 · 17)
= 6 · 37− 13 · 17 = 6 · 37− 13 · (165− 4 · 37)
= −13 · 165 + 58 · 37.

So x = −13 and y = 58 arrange that 165x + 37y = 1.

Question 1 is application of standard algorithms.

Question 2 [14 marks].

(a) Let X be a set. Define what it means for R to be a relation on X. [3]

Now let R be the relation on the set R[x] of polynomials with real coefficients defined
by

( f , g) ∈ R if and only if x2 + 1 divides g− f .

(b) Prove that R is transitive. [5]

For part (c) below, you may assume that R is an equivalence relation.

(c) Find a polynomial h with deg h 6 1 such that h is an element of the equivalence
class [x3 + 2x2 + 3x + 4]R. [6]
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Solution (a) A relation R on X is a subset of X× X.
(b) Suppose f , g, h ∈ R[x] satisfy f Rg and gRh. This means there exist k, l ∈ R[x]
such that g− f = k(x2 + 1) and h− g = l(x2 + 1). Then

h− f = (h− g) + (g− f ) = (k + l)(x2 − 1)

implying f Rh. This proves that R is transitive.
(c) The polynomial division rule provides q, r ∈ R[x] such that
x3 + 2x2 + 3x + 4 = q(x2 + 1) + r and either r = 0 or deg r 6 1. The first equality
implies that x2 + 1 divides r− (x3 + 2x2 + 3x + 4), so h = r is exactly the polynomial
we need, providing it doesn’t turn out to be 0. We carry out polynomial division to
find r:

x + 2
x2 + 1

)
x3 + 2x2 + 3x + 4
x3 + x

2x2 + 2x + 4
2x2 + 2

2x + 2

So the answer is 2x + 2 .

Question 2(a) is bookwork, and 2(b,c) are coursework.

Question 3 [13 marks].

(a) State the definition of a partition of a set X. [4]

(b) Let R be an equivalence relation on X. The Equivalence Relation Theorem
describes how to use R to produce a partition P of X. Write down how P is
defined in terms of R. Your answer should include how the parts of P are
defined [i.e. don’t just use a symbol for each part without explaining what it
means]. [4]

(c) Give an example of a partition of C with exactly two parts. [2]

(d) Write down all possible partitions of the set {1, 2}. [3]

Solution (a) A partition P of X is a set, whose elements are called parts, such that:

(i) ∅ is not a part of P ;

(ii) if A and B are distinct parts of P , then A ∩ B = ∅;

(iii) The union of all parts of P is X.

(The parts of P are subsets of X, but this is implied by the definition above and need
not be stated separately.)
(b) P = {[x]R : x ∈ X}, where [x]R = {y ∈ X : (x, y) ∈ R}.
(c) One of very many possibilities is {{0}, C×}.
(d) There are two, {{1, 2}} and {{1}, {2}}.
Questions 3(a,b) are bookwork. 3(c) is like an example from lectures. 3(d) is unseen.
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Question 4 [10 marks].

(a) Let R be a ring. In order to be a field, R must satisfy four further axioms. Write
down the names of these axioms. You need not write out what the axioms
assert. [4]

(b) The ring Z35 is not a field. Name one of the axioms from your list in part (a)
that is not satisfied by Z35. Write down a counterexample to this axiom in Z35,
and explain why your counterexample is valid. [6]

Solution (a) These are the multiplicative identity law, the multiplicative inverse
law, the multiplicative commutative law, and the nontriviality law.
(b) Z35 does not satisfy the multiplicative inverse law. A counterexample to this law
is that [5]35 has no inverse. For any [a]35 ∈ Z35, the product [5]35[a]35 = [5a]35 cannot
equal [1]35: if it did, we would have 5a ≡35 1, that is 5a− 1 = 35k for some integer k,
but 5 divides the right side of that equation and not the left side.

Question 4(a) is bookwork, and 4(b) has been discussed in lectures although not in
this exact form.

Question 5 [14 marks]. Let U be the set { (a, b, c) : a, b, c ∈ R }. Two operations +
and · on U are defined by

(a, b, c) + (d, e, f ) = (a + d, b + e, c + f ),
(a, b, c) · (d, e, f ) = (ad, ae + b f , c f ).

(a) Prove the multiplicative identity law for U. [8]

(b) Prove that (2, 1, 0) is not a unit in U. [6]

Solution (a) The multiplicative identity element for U is (1, 0, 1), as is shown by the
equalities

(1, 0, 1) · (a, b, c) = (1a, 1b + 0c, 1c) = (a, b, c)
(a, b, c) · (1, 0, 1) = (a1, a0 + b1, c1) = (a, b, c)

for any (a, b, c) ∈ U.
(b) We must show that (2, 1, 0) has no multiplicative inverse. If (a, b, c) were its
multiplicative inverse, the product of these two elements in either order must equal
the identity (1, 0, 1) from part (a). But

(a, b, c) · (2, 1, 0) = (a · 2, a · 1 + b · 0, c · 0)

whose last component cannot equal 1.

Question 5 is an unseen question with parallels in tutorial exercises and coursework.

Question 6 [15 marks].
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(a) Define what it means for a set G with a binary operation ∗ to be a group.
Include the full statements of the axioms. [5]

Now let G = { x ∈ R : x > −1 }, with the binary operation ∗ given by
a ∗ b = ab + a + b.

(b) Prove that ∗ is associative. [6]

(c) Write down the identity element of (G, ∗), and a formula for the inverse of an
element x ∈ G. You need not provide the proofs. [4]

Solution (a) (G, ∗) is a group if the following axioms are satisfied:

Closure law: for all a, b ∈ G, we have a ∗ b ∈ G.

Associative law: for all a, b, c ∈ G, we have a ∗ (b ∗ c) = (a ∗ b) ∗ c.

Identity law: there is an element e ∈ G (called the identity) such that
a ∗ e = e ∗ a = a for any a ∈ G.

Inverse law: for all a ∈ G, there exists b ∈ G such that a ∗ b = b ∗ a = e, where e is the
identity. The element b is called the inverse of a.

[Technically the closure law is redundant with the definition of binary operation, so it
is OK if this is omitted.]
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(b) To prove the associative law, we must show that (a ∗ b) ∗ c = a ∗ (b ∗ c) for all
a, b, c ∈ G. We expand

(a ∗ b) ∗ c = (ab + a + b) ∗ c = (ab + a + b)c + (ab + a + b) + c
= abc + ac + bc + ab + a + b + c

and

a ∗ (b ∗ c) = a ∗ (bc + b + c) = a(bc + b + c) + a + (bc + b + c)
= abc + ab + ac + a + bc + b + c.

getting equal results.
(c) 0 ∈ G is the identity element because [not required!]

a ∗ 0 = a0 + a + 0 = a,
0 ∗ a = 0a + 0 + a = a.

The inverse of a ∈ G is a−1 := −a/(a + 1). Proof [not required!] This inverse lies in
G: since a + 1 is positive, −a/(a + 1) > −1 is equivalent to −a > −1(a + 1), which is
true. Now to check the equation:

a ∗ a−1 = a · −a
a + 1

+ a +
−a

a + 1
=
−a2 + a(a + 1)− a

a + 1
= 0,

which is our identity element. Since ∗ is visibly commutative, a−1 ∗ a will come out to
0 as well.

Question 6(a) is bookwork, and 6(b,c) are unseen.

Question 7 [18 marks].

(a) Let n be a positive integer. Define the symmetric group Sn. Make sure to
specify both the set Sn and the definition of its group operation. [4]

(b) How many elements does Sn have? [2]

Now let g be the element
(1 4 6 9)(2 5 8)(3 10 7)

of S10, written in cycle notation, and let h be the element(
1 2 3 4 5 6 7 8 9 10
4 3 9 2 7 5 6 1 8 10

)
of S10, written in two-line notation.

(c) Write g in two-line notation. [3]

(d) Compute h−1 ◦ g−1, and write it in cycle notation. Show all your working. [9]
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Solution (a) Sn is the set of all permutations on {1, . . . , n}, that is, bijections from
this set to itself. Its group operation is composition: given f , g ∈ Sn, composition
yields the permutation f ◦ g defined by ( f ◦ g)(x) = f (g(x)) for all x ∈ {1, . . . , n}.
(b) |Sn| = n!.
(c) This is a matter of tabulating, for each element of {1, . . . , 10}, which element
follows it in the cycle containing it. We get

g =

(
1 2 3 4 5 6 7 8 9 10
4 5 10 6 8 9 3 2 1 7

)
.

(d) We can save ourselves one step by using the fact that h−1g−1 = (gh)−1. We’ll
work in the two-line notation until the end. We find gh by tabulating g(h(x)) for each
x ∈ {1, . . . , 10}.

gh =

(
1 2 3 4 5 6 7 8 9 10
6 10 1 5 3 8 9 4 2 7

)
Now, we invert the product by swapping the two rows. I’ve also sorted the first row
back into order.

(gh)−1 =

(
1 2 3 4 5 6 7 8 9 10
3 9 5 8 4 1 10 6 7 2

)
Finally we convert to cycle notation. In the cycle notation for f , each cycle has the
form (a f (a) f ( f (a)) . . .), where we use the two-line notation to look up the values
of f , and we stop once we come round to a again. We do this until each element of
{1, . . . , 10} is in some cycle. Cycles with just one element in need not be written
down. The final answer is

h−1g−1 = (gh)−1 = (1 3 5 4 8 6)(2 9 7 10).

Questions 7(a,b) are bookwork, and 7(c,d) are standard algorithms.

End of Paper.
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