Hi Francesca,

I've managed to fill in the rest on my way home on the train. Here's my argument.

I am looking for aX+b in $Z_{44}[X]$ such that (aX+b)(22X+25)=1 in $Z_{44}[X]$.

Expanding the LHS, this amounts to finding integers a and b in Z_{44} such that

22a≡0 (the coefficient of X^2)

 $25a+22b\equiv0$ (the coefficient of X)

25b≡1 (the constant term)

in Z_{44}.

Let's start with b. To find b, we need to find a pair of integers b and d such that 25b+44d=gcd(25, 44)=1. Granted, $25b\equiv1 \mod 44$. One can make appeal to Euclid's algorithm or otherwise to see 25*(-7)+44*4=1, so $b\equiv (-7) \mod 44$ does the job.

For a, one may observe that it needs to be an even integer (because 22a has to be divisible by 44), i.e., a=2c for some integer c.

Combing these two, our task is then to find c such that the coefficient of $X:25a+22b=50c+22*(-7)\equiv 0 \mod 44$, i.e., solve $50c\equiv 154 \mod 44$.

How do we find c? Our intermediate goal is to find a pair of integers d and e such that 50d+44e=gcd(55, 44)=2. Once we find a such pair, then 50*(77d) +44*(77d)=2*77=154, so we get c=77d.

How do we find d and e then? Well, we run Euclid's algorithm again with 50 and 44! If you do this exercise, we find $50^{(-7)}+44^{8}=gcd(50, 44)=2$, i.e. (d, e)=(-7, 8). So feeding this back into the argument above, c=(-7)*77=(-539)=33 mod 44.

Of course what we want is a and this is given by $a=2c\equiv2*33=66\equiv22 \mod 44$. On the other hand $b=(-7)\equiv37 \mod 44$. So the answer you are looking for is [22]X+[37] in Z_{44}[X].

Looking back, a=22 seems like an `obvious thing' to do!