Hi Francesca,
I've managed to fill in the rest on my way home on the train. Here's my argument.

I am looking for $a X+b$ in $Z_{-}\{44\}[X]$ such that $(a X+b)(22 X+25)=1$ in $Z _\{44\}[X]$.

Expanding the LHS, this amounts to finding integers a and b in Z_\{44\} such that
$22 a \equiv 0$ (the coefficient of $X^{\wedge} 2$)
$25 a+22 b \equiv 0$ (the coefficient of X)
$25 \mathrm{~b} \equiv 1$ (the constant term)
in Z_\{44\}.
Let's start with b. To find b, we need to find a pair of integers b and d such that $25 b+44 d=\operatorname{gcd}(25,44)=1$. Granted, $25 b \equiv 1 \bmod 44$. One can make appeal to Euclid's algorithm or otherwise to see $25^{*}(-7)+44^{*} 4=1$, so $b \equiv(-7)$ mod 44 does the job.

For a, one may observe that it needs to be an even integer (because 22a has to be divisible by 44), i.e., $a=2 c$ for some integer c.

Combing these two, our task is then to find c such that the coefficient of $X: 25 a+22 b=50 c+22^{*}(-7) \equiv 0 \bmod 44$, i.e., solve $50 c \equiv 154 \bmod 44$.

How do we find c? Our intermediate goal is to find a pair of integers d and e such that $50 d+44 e=\operatorname{gcd}(55,44)=2$. Once we find a such pair, then $50 *(77 d)$ $+44^{*}(77 d)=2^{*} 77=154$, so we get $c=77$ d.

How do we find d and e then? Well, we run Euclid's algorithm again with 50 and 44 ! If you do this exercise, we find $50 *(-7)+44^{*} 8=\operatorname{gcd}(50,44)=2$, i.e. $(d, e)=(-7$, 8). So feeding this back into the argument above, $c=(-7) * 77=(-539) \equiv 33 \mathrm{mod}$ 44.

Of course what we want is a and this is given by $a=2 c \equiv 2 * 33=66 \equiv 22 \bmod 44$. On the other hand $b=(-7) \equiv 37$ mod 44 . So the answer you are looking for is [22]X+[37] in Z_\{44\}[X].

Looking back, $a=22$ seems like an `obvious thing' to do!

