
MTH 4104 Mock Exam Paper (2023-2024) Shu SASAKI

This mock paper is purposely slightly harder (but only just) than the actual paper I’ve written
this academic year.

Q1. LetR be a relation on the set of positive integers:

aRb⇔ either a divides b, or b divides a

Is this an equivalence relation? If so prove it. If not, explain exactly which axioms it fails to satisfy,
by giving an explicit counter-example for each.

A1. • aRa holds since a always divides a.
• If aRb holds, then bRa holds. This follows by definition.
• If aRb and bRc, should aRc hold? Not necessarily. For example, 2R6 and 6R3 hold; but

2R3 does not hold (as neither 2 divides 3 nor 3 divides 2). Hence R is NOT an equivalence rela-
tion (failing on the transitivity).

Q2. Solve the following set of equations in X and Y in F13:

X + 4Y ≡ 17 mod 13
X − 2Y ≡ 6 mod 13

A2. Subtracting the second congruence equation from the first, we get 6Y ≡ 11 mod 13.
To solve this equation in Y , we use Euclid’s algorithm to find a pair of integers a and b such that
6a + 13b = gcd(6, 13) = 1. Granted, multiplying 6Y ≡ 11 by a, we get 6aY ≡ 11a which is
Y ≡ 11a mod 13 (because 6a = −13b + 1 ≡ 1 mod 13). By Euclid’s algorithm or otherwise, we
find (a, b) = (11,−5) does the job. Therefore Y ≡ 11 · 11 = 121 ≡ 4 mod 13. Plugging this
back into one of the given congruence equations, we find X ≡ 1mod 13. So (X ,Y ) = (1, 4)mod
13 is the solution.

Q3. (1) Let G be the set of real numbers that are not equal to−1. Define a binary operation ∗
on G by

a ∗ b = a+ b+ ab.

Prove that (G, ∗) is a group.

(2)[Extra for Enthusiasts] Let S be a set consisting of four symbols {♣,♦,♥,♠}. Define a
binary operation ∗ on S by the following table which describes (row) ∗ (column):

♣ ♦ ♥ ♠
♣ ♣ ♦ ♥ ♠
♦ ♦ ♥ ♠ ♣
♥ ♥ ♠ ♣ ♦
♠ ♠ ♣ ♦ ♥

Is (S, ∗) a group? Justify your answer.
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A3.(1) We check the group axioms.

(G0) Since a+ b+ ab is evidently a real number, it remains to check it is not equal to−1 (if a
and b are not). If a+ b+ ab were equal to−1, then a+ b+ ab+ 1 = (a+ 1)(b+ 1) would be 0.
However, since neither a nor b is equal to −1, this is a contradiction.

(G1) On one hand,

(a ∗ b) ∗ c = (a+ b+ ab) ∗ c = (a+ b+ ab)+ c+(a+ b+ ab)c = a+ b+ c+ ab+ bc+ ca+ abc.

On the other hand,

a ∗ (b ∗ c) = a ∗ (b+ c+ bc) = a+ (b+ c+ bc) + a(b+ c+ bc) = a+ b+ c+ ab+ bc+ ca+ abc.

Combining, (a ∗ b) ∗ c = a ∗ (b ∗ c).
(G2) The identity element of G with respect to ∗ is 0. Indeed,

a ∗ 0 = a+ 0 + a0 = a.

Similarly,
0 ∗ a = 0 + a+ 0a = a.

[How do we find e? We need to find e in G such that a ∗ e = a, i.e. a+ e + ae = a, for every a in
G . Subtracting a from both sides of the equality, we get e + ae = 0, i.e. e(1 + a) = 0. However,
we know by assumption that a is not equal to−1 and as a result 1+ a is never 0! The only way the
product e(1 + a) attains 0 is that e itself is 0.]

(G3) The inverse of a is −1 + 1/(1 + a) (since a 6= −1, 1 + a is non-zero). Indeed,

a∗(−1+
1

1 + a
) = a+(−1)+

1

1 + a
+a

(
−1 +

1

(1 + a)

)
= a+(−1)+

1

1 + a
−a+ a

1 + a
= 0.

Similarly, it is possible to verify (−1 + 1/(1 + a)) ∗ a = 0. [How do we find the inverse b of a in
G? We need to find b such that a ∗ b = 0 (as seen in (G2), the identity is 0), i.e. a + b + ab = 0.
Adding 1 on both sides, we get a + b + ab + 1 = 1, i.e. (a + 1)(b + 1) = 1. Since a 6= −1,
1 + a 6= 0 and therefore b+ 1 = 1/(1 + a). In conclusion, b = −1 + 1/(1 + a)]

(2) It is a group. (G0) Since all combinations of (row) ∗ (column) lie in S, (G0) holds (without
further expenditure of effort). (G2) ♣ is the identity element. Indeed, the first row and the first
column prove (G2). (G3) According to the table, the inverse of♣ is♣ itself, the inverse of♦ is♠,
the inverse of ♥ is ♥ itself, and the inverse of ♠ is ♦.
Parenthetically, it is easy to check from the ‘symmetry’ of the table with respect to the ‘diagonals’
that (G4) holds, hence (S, ∗) is abelian. This is not part of Q3(2) though.

(G1) This is the hardest to check (formally). We can use the commutativity of ∗ to convince
ourselves that it suffices to check (a quarter of) all possible combinations:

♣ ∗ (♣ ∗ ♣) = ♣ ∗ ♣ = (♣ ∗ ♣) ∗ ♣

♣ ∗ (♣ ∗ ♦) = ♣ ∗ ♦ = (♣ ∗ ♣) ∗ ♦

♣ ∗ (♣ ∗ ♥) = ♣ ∗ ♥ = (♣ ∗ ♣) ∗ ♥
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♣ ∗ (♣ ∗ ♠) = ♣ ∗ ♠ = (♣ ∗ ♣) ∗ ♠
♣ ∗ (♦ ∗ ♦) = ♣ ∗ ♥ = ♥ = ♦ ∗ ♦ = (♣ ∗ ♦) ∗ ♦
♣ ∗ (♦ ∗ ♥) = ♣ ∗ ♠ = ♠ = ♦ ∗ ♥ = (♣ ∗ ♦) ∗ ♥
♣ ∗ (♦ ∗ ♠) = ♣ ∗ ♣ = ♣ = ♦ ∗ ♠ = (♣ ∗ ♦) ∗ ♥
♣ ∗ (♥ ∗ ♥) = ♣ ∗ ♣ = ♣ = ♥ ∗ ♥ = (♣ ∗ ♥) ∗ ♥
♣ ∗ (♥ ∗ ♠) = ♣ ∗ ♦ = ♦ = ♥ ∗ ♠ = (♣ ∗ ♥) ∗ ♠
♣ ∗ (♠ ∗ ♠) = ♣ ∗ ♥ = ♥ = ♠ ∗ ♠ = (♣ ∗ ♠) ∗ ♠

♦ ∗ (♦ ∗ ♦) = ♦ ∗ ♥ = ♥ ∗ ♦ = (♦ ∗ ♦) ∗ ♦
♦ ∗ (♦ ∗ ♥) = ♦ ∗ ♠ = ♣ = ♥ ∗ ♥ = (♦ ∗ ♦) ∗ ♥
♦ ∗ (♦ ∗ ♠) = ♦ ∗ ♣ = ♦ = ♥ ∗ ♠ = (♦ ∗ ♦) ∗ ♠

♥ ∗ (♥ ∗ ♥) = ♥ ∗ ♣ = ♣ ∗ ♥ = (♥ ∗ ♥) ∗ ♥
♥ ∗ (♥ ∗ ♠) = ♥ ∗ ♦ = ♠ = ♣ ∗ ♠ = (♥ ∗ ♥) ∗ ♠

♠ ∗ (♠ ∗ ♠) = ♠ ∗ ♥ = ♥ ∗ ♠ = (♠ ∗ ♠) ∗ ♠
(I am sure no one goes down this road, but I feel morally obliged to show you how this is done!)
or simply spot that the table seems to manifest the same set of additive relations as S = Z4 with
♣ = [0]4,♦ = [1]4,♥ = [2]4 and ♠ = [3]4. In fact, I have used this viewpoint to pull off the
calculations above. Since we know that (Z4,+) is a group under addition, (S, ∗) is a group.

Q4. Let (R,+,×) be a ring and 0 denote the identity element with respect to addition +.
Prove that a0 = 0a = 0 for every element a in R.

A4. This is Proposition 16. By (R+2), 0+0 = 0. Multiplying a from left, we obtain a(0+0) =
a0. The LHS equals a0+a0 by (R×+), while the RHS equals a0 = a0+0 by (R+2) again. Plugging
these back into the equality, we get

a0 + a0 = a0 + 0.

Proposition 15 on the other hand asserts a + b = a + c implies b = c for any a, b, c in R– this
follows simply by subtracting the (unique) inverse of a from left

(−a)+ a+ b = (−a)+ a+ c (R+1)⇒ (−a+ a)+ b = (−a+ a)+ c (R+3)⇒ 0+ b = 0+ c
(R+2)⇒ b = c.

We therefore conclude that a0 = 0. On the other hand, multiplying a from right on 0 + 0 = 0,
we obtain (0 + 0)a = 0a and therefore

0a+ 0a = 0a+ 0

as before. By Proposition 15 again, 0a = 0.

Q5. Let H be Hamilton’s quaternions, i.e. the set of elements of the form

c1 + c(p)p+ c(q)q+ c(r)r ∈ R1 + Rp+ Rq+ Rr

where the basis elements 1, p, q and r satisfy the multiplicative relations
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• 1p = p1 = p, 1q = q1 = q, 1r = r1 = r,

• p2 = −1, q2 = −1, r2 = −1,

• pq = r, qp = −r,

• qr = p, rq = −p,

• rp = q, qr = −q,

together with natural addition and multiplication (prescribed by the relation).
(1) What is the multiplicative inverse of p+q−r? (2) IsH a field? If so, prove it. If not, explain

why.

A5. (1) In the lecture, we show that the multiplicative inverse of a non-zero element of H of
the form c + c(p)p+ c(q)q+ c(r)r is given by

c
R

− c(p)
R
p− c(q)

R
q− c(r)

R
r

where R is the positive real number c2 + c(p)2 + c(q)2 + c(r)2 (since the element is assumed to
be non-zero, c, c(p), c(q) and c(r) are not simultaneously zero; and this translates asR being non-
zero). The question asks the case when (c, c(p), c(q), c(r)) = (0, 1, 1,−1). So the inverse we seek
is

−1

3
p− 1

3
q− −1

3
r.

(2) H is not a field, because it is not commutative ring. For example, pq is not equal to qp.

Q6. Find polynomials f (X ) and g(X ) inF3[X ] such that (X 8+[2])f (X )+([2]X 6+[2])g(X ) =
gcd(X 8 + [2], [2]X 6 + [2]) in F3[X ].

A6. Since [2][2] = [4] = [1] in F3 = {[0], [1], [2]}, Euclid’s algorithm in F3[X ] sees

X 8 + [2] = [2]X 2([2]X 6 + [2]) + [2]X 2 + [2]
[2]X 6 + [2] = (X 4 + [2]X 2 + [1])([2]X 2 + [2]) + [0].

Hence [2]X 2 + [2] is a common divisor. To get the gcd, we need to find a monic polynomial of
degree 2 that divides [2]X 2 + [2] in F3[X ]. To this end, it suffices to multiply [2]X 2 + [2] by the
multiplicative inverse of [2]. Since the inverse is [2] itself,

[2]([2]X 2 + [2]) = [4]X 2 + [4] = X 2 + [1].

The gcd is X 2 + [1].
On the other hand, Euclid’s algorithm shows

[2]X 2 + [2] = (X 8 + [2])− [2]X 2([2]X 6 + [2]).

As we have did in finding gcd, to find f and g, we multiply this identity through by [2]. The LHS
becomes X 2 + [1] (as seen above), while the RHS should, correspondingly, become

[2](X 8 + [2])− [4]X 2([2]X 6 + [2]) = [2](X 8 + [2])− X 2([2]X 6 + [2]).
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In other words, (f , g) = ([2],−X 2) does the job.

Q7. Let σ be an element of S10 of the form(
1 2 3 4 5 6 7 8 9 10
4 7 9 6 8 1 5 10 3 2

)
(1) Write σ in cycle notation . (2) Let τ be (1)(2 8 6 7)(3 5 4 9)(10). Compute σ ◦ τ−1 in cycle

notatioon. (3) Determine the order of σ.

A7. (1) (1 4 6)(2 7 5 8 10)(3 9). (2) Since

τ−1 = (1)(2 7 6 8)(3 9 4 5)(10) =

(
1 2 3 4 5 6 7 8 9 10
1 7 9 5 3 8 6 2 4 10

)
=

σ ◦ τ−1 =

(
1 2 3 4 5 6 7 8 9 10
4 5 3 8 9 10 1 7 6 2

)
= (1 4 8 7)(2 5 9 6 10)(3).

(3) It is given by the lcm of the lengths of all cycles in the cycle expression of σ, i.e. lcm(3, 5, 2) = 30.
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