This mock paper is purposely slightly harder (but only just) than the actual paper I've written this academic year.

Q1. Let \mathscr{R} be a relation on the set of positive integers:

$$
a \mathscr{R} b \Leftrightarrow \text { either } a \text { divides } b \text {, or } b \text { divides } a
$$

Is this an equivalence relation? If so prove it. If not, explain exactly which axioms it fails to satisfy, by giving an explicit counter-example for each.

A1. \bullet R a holds since a always divides a.

- If $a \mathfrak{R} b$ holds, then $b \mathscr{R} a$ holds. This follows by definition.
- If $a \mathscr{R} b$ and $b \mathscr{R} c$, should $a \mathfrak{R} c$ hold? Not necessarily. For example, $2 \mathscr{R} 6$ and $6 \mathfrak{R} 3$ hold; but $2 \mathscr{R} 3$ does not hold (as neither 2 divides 3 nor 3 divides 2). Hence \mathscr{R} is NOT an equivalence relation (failing on the transitivity).

Q2. Solve the following set of equations in X and Y in \mathbb{F}_{13} :

$$
\begin{aligned}
& X+4 Y \equiv 17 \quad \bmod 13 \\
& X-2 Y \equiv 6 \quad \bmod 13
\end{aligned}
$$

A2. Subtracting the second congruence equation from the first, we get $6 Y \equiv 11 \bmod 13$. To solve this equation in Y, we use Euclid's algorithm to find a pair of integers a and b such that $6 a+13 b=\operatorname{gcd}(6,13)=1$. Granted, multiplying $6 Y \equiv 11$ by a, we get $6 a Y \equiv 11 a$ which is $Y \equiv 11 a \bmod 13($ because $6 a=-13 b+1 \equiv 1 \bmod 13)$. By Euclid's algorithm or otherwise, we find $(a, b)=(11,-5)$ does the job. Therefore $Y \equiv 11 \cdot 11=121 \equiv 4 \bmod 13$. Plugging this back into one of the given congruence equations, we find $X \equiv 1 \bmod 13$. So $(X, Y)=(1,4) \bmod$ 13 is the solution.

Q3. (1) Let G be the set of real numbers that are not equal to -1 . Define a binary operation * on G by

$$
a * b=a+b+a b .
$$

Prove that $(G, *)$ is a group.
(2)[Extra for Enthusiasts] Let S be a set consisting of four symbols $\{\boldsymbol{\phi}, \diamond, \diamond, \boldsymbol{\uparrow}\}$. Define a binary operation $*$ on S by the following table which describes (row) $*$ (column):

Is $(S, *)$ a group? Justify your answer.

A3.(1) We check the group axioms.
(G0) Since $a+b+a b$ is evidently a real number, it remains to check it is not equal to -1 (if a and b are not). If $a+b+a b$ were equal to -1 , then $a+b+a b+1=(a+1)(b+1)$ would be 0 . However, since neither a nor b is equal to -1 , this is a contradiction.
(G1) On one hand,
$(a * b) * c=(a+b+a b) * c=(a+b+a b)+c+(a+b+a b) c=a+b+c+a b+b c+c a+a b c$.
On the other hand,
$a *(b * c)=a *(b+c+b c)=a+(b+c+b c)+a(b+c+b c)=a+b+c+a b+b c+c a+a b c$.
Combining, $(a * b) * c=a *(b * c)$.
(G2) The identity element of G with respect to $*$ is 0 . Indeed,

$$
a * 0=a+0+a 0=a .
$$

Similarly,

$$
0 * a=0+a+0 a=a .
$$

[How do we find e ? We need to find e in G such that $a * e=a$, i.e. $a+e+a e=a$, for every a in G. Subtracting a from both sides of the equality, we get $e+a e=0$, i.e. $e(1+a)=0$. However, we know by assumption that a is not equal to -1 and as a result $1+a$ is never 0 ! The only way the product $e(1+a)$ attains 0 is that e itself is 0 .]
(G3) The inverse of a is $-1+1 /(1+a)$ (since $a \neq-1,1+a$ is non-zero). Indeed,
$a *\left(-1+\frac{1}{1+a}\right)=a+(-1)+\frac{1}{1+a}+a\left(-1+\frac{1}{(1+a)}\right)=a+(-1)+\frac{1}{1+a}-a+\frac{a}{1+a}=0$.
Similarly, it is possible to verify $(-1+1 /(1+a)) * a=0$. [How do we find the inverse b of a in G ? We need to find b such that $a * b=0$ (as seen in (G2), the identity is 0), i.e. $a+b+a b=0$. Adding 1 on both sides, we get $a+b+a b+1=1$, i.e. $(a+1)(b+1)=1$. Since $a \neq-1$, $1+a \neq 0$ and therefore $b+1=1 /(1+a)$. In conclusion, $b=-1+1 /(1+a)]$
(2) It is a group. (G0) Since all combinations of (row) $*$ (column) lie in S, (G0) holds (without further expenditure of effort). (G2) $\boldsymbol{\&}$ is the identity element. Indeed, the first row and the first column prove (G2). (G3) According to the table, the inverse of is itself, the inverse of \diamond is the inverse of \bigcirc is \bigcirc itself, and the inverse of $\boldsymbol{\phi}$ is .
Parenthetically, it is easy to check from the 'symmetry' of the table with respect to the 'diagonals' that (G4) holds, hence ($S, *$) is abelian. This is not part of Q3(2) though.
(G1) This is the hardest to check (formally). We can use the commutativity of $*$ to convince ourselves that it suffices to check (a quarter of) all possible combinations:

$$
\begin{aligned}
& \boldsymbol{\rho} *(\boldsymbol{\phi} * \diamond)=\boldsymbol{\phi} * \diamond=(\boldsymbol{\rho} * \boldsymbol{\rho}) * \diamond \\
& \boldsymbol{\rho} *(\boldsymbol{\rho} * \Gamma)=\boldsymbol{\alpha} * \Gamma=(\boldsymbol{\rho} * \boldsymbol{\mu}) * \Gamma
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{\phi} *(\boldsymbol{\rho} * \boldsymbol{\phi})=\boldsymbol{\$} * \boldsymbol{\phi}=(\boldsymbol{\phi} * \boldsymbol{\rho}) * \\
& \boldsymbol{\alpha} *(\diamond * \diamond)=\boldsymbol{\alpha} * \odot=\bigcirc=\diamond * \diamond=(\boldsymbol{\alpha} * \diamond) * \diamond \\
& \boldsymbol{\alpha} *(\diamond * \odot)=\boldsymbol{\alpha} * \boldsymbol{\phi}=\boldsymbol{\Lambda}=\diamond * \odot=(\boldsymbol{\alpha} * \diamond) * \odot \\
& \boldsymbol{\mu} *(\diamond * \boldsymbol{\phi})=\boldsymbol{\alpha} * \boldsymbol{\mu}=\boldsymbol{\mu}=\diamond * \boldsymbol{\phi}=(\boldsymbol{\rho} * \diamond) * \odot \\
& \boldsymbol{\phi} *(\Gamma * \odot)=\boldsymbol{\alpha} * \boldsymbol{\phi}=\boldsymbol{\phi}=\triangle * \odot=(\boldsymbol{\mu} * \Omega) * \odot \\
& \boldsymbol{\alpha} *(\rho * \boldsymbol{\phi})=\boldsymbol{\alpha} * \diamond=\diamond=\varnothing * \boldsymbol{\phi}=(\boldsymbol{\alpha} * \odot) * \boldsymbol{\phi} \\
& \boldsymbol{\mu} *(\boldsymbol{\phi} * \boldsymbol{\phi})=\boldsymbol{\phi} * \Omega=\Gamma=\boldsymbol{\phi} * \boldsymbol{\phi}=(\boldsymbol{\phi} * \boldsymbol{\phi}) * \boldsymbol{\phi} \\
& \diamond *(\diamond * \diamond)=\diamond * \diamond=\diamond * \diamond=(\diamond * \diamond) * \diamond \\
& \diamond *(\diamond * \odot)=\diamond * \boldsymbol{\phi}=\boldsymbol{\phi}=\triangle * \odot=(\diamond * \diamond) * \odot \\
& \diamond *(\diamond * \boldsymbol{\phi})=\diamond * \boldsymbol{\phi}=\diamond=\bigcirc * \boldsymbol{\phi}=(\diamond * \diamond) *
\end{aligned}
$$

$$
\begin{aligned}
& \bigcirc *(\bigcirc * \boldsymbol{\phi})=\varrho * \diamond=\boldsymbol{\phi}=\boldsymbol{\phi} * \boldsymbol{\phi}=(\Omega * \odot) * \\
& \boldsymbol{\phi} *(\boldsymbol{\phi} * \boldsymbol{\phi})=\boldsymbol{\phi} * \odot=\bigcirc * \boldsymbol{\phi}=(\boldsymbol{\phi} * \boldsymbol{\phi}) * \boldsymbol{\phi}
\end{aligned}
$$

(I am sure no one goes down this road, but I feel morally obliged to show you how this is done!) or simply spot that the table seems to manifest the same set of additive relations as $S=\mathbb{Z}_{4}$ with $\boldsymbol{\&}=[0]_{4}, \diamond=[1]_{4}, \diamond=[2]_{4}$ and $\boldsymbol{\oplus}=[3]_{4}$. In fact, I have used this viewpoint to pull off the calculations above. Since we know that $\left(\mathbb{Z}_{4},+\right)$ is a group under addition, $(S, *)$ is a group.

Q4. Let $(R,+, \times)$ be a ring and 0 denote the identity element with respect to addition + . Prove that $a 0=0 a=0$ for every element a in R.

A4. This is Proposition 16. By $(\mathrm{R}+2), 0+0=0$. Multiplying a from left, we obtain $a(0+0)=$ $a 0$. The LHS equals $a 0+a 0$ by ($\mathrm{R} \times+$), while the RHS equals $a 0=a 0+0$ by ($\mathrm{R}+2$) again. Plugging these back into the equality, we get

$$
a 0+a 0=a 0+0 .
$$

Proposition 15 on the other hand asserts $a+b=a+c$ implies $b=c$ for any a, b, c in R - this follows simply by subtracting the (unique) inverse of a from left
$(-a)+a+b=(-a)+a+c \stackrel{(\mathrm{R}+1)}{\Rightarrow}(-a+a)+b=(-a+a)+c \stackrel{(\mathrm{R}+3)}{\Rightarrow} 0+b=0+c \stackrel{(\mathrm{R}+2)}{\Rightarrow} b=c$.
We therefore conclude that $a 0=0$. On the other hand, multiplying a from right on $0+0=0$, we obtain $(0+0) a=0 a$ and therefore

$$
0 a+0 a=0 a+0
$$

as before. By Proposition 15 again, $0 a=0$.
Q5. Let \mathbb{H} be Hamilton's quaternions, i.e. the set of elements of the form

$$
c 1+c(p) p+c(q) q+c(r) r \in \mathbb{R} 1+\mathbb{R} p+\mathbb{R} q+\mathbb{R} r
$$

where the basis elements $1, p, q$ and r satisfy the multiplicative relations

- $1 p=p 1=p, 1 q=q 1=q, 1 r=r 1=r$,
- $p^{2}=-1, q^{2}=-1, r^{2}=-1$,
- $p q=r, q p=-r$,
- $q r=p, r q=-p$,
- $r p=q, q r=-q$,
together with natural addition and multiplication (prescribed by the relation).
(1) What is the multiplicative inverse of $p+q-r$? (2) Is \mathbb{H} a field? If so, prove it. If not, explain why.

A5. (1) In the lecture, we show that the multiplicative inverse of a non-zero element of \mathbb{H} of the form $c+c(p) p+c(q) q+c(r) r$ is given by

$$
\frac{c}{\mathscr{R}}-\frac{c(p)}{\mathscr{R}} p-\frac{c(q)}{\mathscr{R}} q-\frac{c(r)}{\mathscr{R}} r
$$

where \mathscr{R} is the positive real number $c^{2}+c(p)^{2}+c(q)^{2}+c(r)^{2}$ (since the element is assumed to be non-zero, $c, c(p), c(q)$ and $c(r)$ are not simultaneously zero; and this translates as \mathscr{R} being nonzero). The question asks the case when $(c, c(p), c(q), c(r))=(0,1,1,-1)$. So the inverse we seek is

$$
-\frac{1}{3} p-\frac{1}{3} q-\frac{-1}{3} r
$$

(2) \mathbb{H} is not a field, because it is not commutative ring. For example, $p q$ is not equal to $q p$.

Q6. Find polynomials $f(X)$ and $g(X)$ in $\mathbb{F}_{3}[X]$ such that $\left(X^{8}+[2]\right) f(X)+\left([2] X^{6}+[2]\right) g(X)=$ $\operatorname{gcd}\left(X^{8}+[2],[2] X^{6}+[2]\right)$ in $\mathbb{F}_{3}[X]$.

A6. Since $[2][2]=[4]=[1]$ in $\mathbb{F}_{3}=\{[0],[1],[2]\}$, Euclid's algorithm in $\mathbb{F}_{3}[X]$ sees

$$
\begin{aligned}
X^{8}+[2] & =[2] X^{2}\left([2] X^{6}+[2]\right)+[2] X^{2}+[2] \\
{[2] X^{6}+[2] } & =\left(X^{4}+[2] X^{2}+[1]\right)\left([2] X^{2}+[2]\right)+[0]
\end{aligned}
$$

Hence $[2] X^{2}+[2]$ is a common divisor. To get the gcd, we need to find a monic polynomial of degree 2 that divides $[2] X^{2}+[2]$ in $\mathbb{F}_{3}[X]$. To this end, it suffices to multiply $[2] X^{2}+[2]$ by the multiplicative inverse of $[2]$. Since the inverse is [2] itself,

$$
[2]\left([2] X^{2}+[2]\right)=[4] X^{2}+[4]=X^{2}+[1]
$$

The gcd is $X^{2}+[1]$.
On the other hand, Euclid's algorithm shows

$$
[2] X^{2}+[2]=\left(X^{8}+[2]\right)-[2] X^{2}\left([2] X^{6}+[2]\right)
$$

As we have did in finding ged, to find f and g, we multiply this identity through by [2]. The LHS becomes $X^{2}+[1]$ (as seen above), while the RHS should, correspondingly, become

$$
[2]\left(X^{8}+[2]\right)-[4] X^{2}\left([2] X^{6}+[2]\right)=[2]\left(X^{8}+[2]\right)-X^{2}\left([2] X^{6}+[2]\right)
$$

In other words, $(f, g)=\left([2],-X^{2}\right)$ does the job.
Q7. Let σ be an element of S_{10} of the form

$$
\left(\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
4 & 7 & 9 & 6 & 8 & 1 & 5 & 10 & 3 & 2
\end{array}\right)
$$

(1) Write $\boldsymbol{\sigma}$ in cycle notation. (2) Let $\boldsymbol{\tau}$ be (1)(2867)(3549)(10). Compute $\sigma \circ \boldsymbol{\tau}^{-1}$ in cycle notatioon. (3) Determine the order of σ.

A7. (1) $(146)(275810)(39)$. (2) Since

$$
\begin{aligned}
& \tau^{-1}=(1)(2768)(3945)(10)=\left(\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
1 & 7 & 9 & 5 & 3 & 8 & 6 & 2 & 4 & 10
\end{array}\right)= \\
& \sigma \circ \tau^{-1}=\left(\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
4 & 5 & 3 & 8 & 9 & 10 & 1 & 7 & 6 & 2
\end{array}\right)=(1487)(259610)(3) .
\end{aligned}
$$

(3) It is given by the 1 cm of the lengths of all cycles in the cycle expression of $\boldsymbol{\sigma}$, i.e. $1 \mathrm{~cm}(3,5,2)=30$.

