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Question 1 [20 marks]. This question is similar to those on exercise sheets.

(a) Taking log of the original expression gives:

logµx = logB+ x log c

This expression is now linear in x- Comparing the expression with Y = α+ βx
gives:

Y = logµx, α = logB, β = log c

[4]

(b) The graphs appears to show an approximately linear relationship and this support
the logarithmic transformation. However, it does appear to have a slight curve
and this would warrant closer inspection of the model to see if it is appropriate for
the data. [2]
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(c) Obtaining the estimates of α and β using

Sxx =
∑

x2i − nx̄
2 = 11, 120− 8

(
296

8

)2
= 168

Sxy =
∑

xy− nx̄ȳ = −2, 104.5− 8

(
296

8

)(
−57.129

8

)
= 9.273

Thus, the estimates are

β̂ =
Sxy

Sxx
=
9.273

168
= 0.055196

α̂ = ȳ− β̂x̄ =
−57.129

8
− 0.0055196× 296

8
= −9.1834
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Therefore, we obtain

B = eα = e−9.1834 = 0.000103

C = eβ = e0.055196 = 1.06

[4]

(d) The coefficient of determination is given by:

R2 =
S2xy
SxxSyy

=
9.2732

168× 0.53467
= 95.7%

where Syy =
∑
y2 − nȳ2 = 408.5− 8×

(
−57.129

8

)2
= 0.53467.

This tell us that 95.7% of the variation in the data can be explained by the model
and so indicates an extremely good overall fit of the model. Obviously the value
of the R2 is different from the adjusted R2, since the adjusted R2 is equal to

R2(adj) =

(
1− (n− 1)

MSE

SST

)
6=
(
1−

SSE

SST

)
= R2

In particular, the adjusted R2 takes into account the number of predictors in the
model and can be useful for comparing models with different numbers of
parameters. [4]

(e) The completed table of residuals using êi = yi − ŷi is Since the residuals for age

Age, x 30 32 34 36 38 40 42 44
Residual, êi 0.08 0.02 -0.03 -0.06 -0.06 -0.03 0.02 0.09

32, 36 and 40 are respectively computed as

ê32 = −7.40− (−9.1834+ 0.055196× 32) = 0.02
ê36 = −7.26− (−9.1834+ 0.055196× 36) = −0.06

ê40 = −7.01− (−9.1834+ 0.055196× 40) = −0.03

The residuals should be patternless when plotted against x, however it is clear to
see that some pattern exists - this indicates that the linear model is not a good fit
and that there is some other variable at work here. [2]

(f) Using the formula on lecture notes, the variance of the mean predicted response is:{
1

n
+

(x0 − x̄
2

Sxx

}
σ̂2 =

{
1

8
+

(35− 37)2

168

}
× 0.0038056 = 0.0005663

where σ̂2 = 1
6

(
0.53467− 9.2732

168

)
= 0.0038056

The estimate is Y = logµ35 = −9.1834+ 0.055196× 35 = −7.251 . Using the t6
distribution, a 95% confidence interval for Y = lnµ35 is

−7.251± 2.447
√
0.0005663 = (−7.309,−7.193)
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The corresponding 95% confidence interval for µ35 is

(0.000669, 0.000752)

[4]

Question 2 [28 marks]. This question is similar to examples in the lecture notes

(a) Looking at the R output and relative summary command, we obtain that the
intercept of the fitted line is 7.05518, with a standard error of 0.48407 and the
estimated slope is -0.41088 with a standard error of 0.08477. In the table, we have
also the t statistics and the p values corresponding to individual tests of the
hypothesis “true coefficient equals to 0”. Here, both the p-values are tiny,
indicating that the regressors explains a substantial part of the variation in the
data (thus statistically significant) and the intercept is significant different from
zero at any reasonable level. Looking at the R2, we have that the model explains
only 11% of the variation in the data, thus the model seems not to be the best
model to be considered.

Finally, the F statistic corresponds to an F test of the hypothesis that all
regressors (excluding the intercept term) are jointly significant. Here with a single
regressor, the p-value is of course identical to that of the t test for the coefficient
log(price) [6]

(b) We need to run a t test for the null hypothesis H0 : β2 = −0.6 against
H1 : β2 6= −0.6. Thus we have the following t value:

t =
−0.41088+ 0.6

0.08477
=
0.18912

0.08477
= 2.230978

This value in absolute value is bigger than the critical value. Thus we reject the
null hypothesis H0 : β2 = −0.6. [4]

(c) We can complete the ANOVA Table by using the equations available in the
lecture notes [10]

Source df SS MS F
log(price) 1 26.347 26.347 25.571
Residual 178 199.643 1.122

Lack of fit 145 165.641 1.142 1.109
Pure Error 33 34.002 1.030

Total 179 225.990
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(d) The Q-Q plot of the standardized residuals is used to check the normality
assumption. In this case, we can see that the plot has some heavy tails in the
upper part of the plot, thus we should reject the normality assumption. As a
further test to check the normality assumption, one can run the Shapiro-Wilk test
and if the p-value is smaller than the 5% significance level, we can reject the null
hypothesis. [5]

(e) The 95% confidence interval for the intercept parameter β1 is equal to[
β̂1 − tn−2,α

2
ŝe(β̂1), β̂1 + tn−2,α

2
ŝe(β̂1)

]
[
7.05518− t178,α

2
× 0.48407, 7.05518+ t178,α

2
× 0.48407

]
[7.05518− 1.973× 0.48407, 7.05518+ 1.973× 0.48407]
[6.10011, 8.01025]

[3]

Question 3 [20 marks]. This question is similar to examples in the lecture notes.

(a) First of all, we define the AIC criterion, which is

AIC = 2(p+ 1) − 2 log L

where p− 1 is the number of regressor variables and log L is the log likelihood.
We want to minimize the AIC. We start with the full model and we compare the
AIC for the full model to AIC for each model dropping one regressor. We find the
model with the minimum value of the AIC. If this is the full model, then we stop.
Otherwise, we start form the new best model and we repeat it. [6]
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(b) At step 1, we omit variable BallWt. At the second step, we omit variable
BallDia, while at the third step, we omit variable Cond. Thus the final model
includes only the variable Velocity and Angle. [2]

(c) The variance inflation factor (VIF) can be used to indicate when multicollinearity
may be a problem. Consider a regression problem with p− 1 regressors. Suppose
we fitted a regression model with xj as the dependent variable and the remaining
p− 2 variables as the regressor variables. Let R2j be the coefficient of
determination (not expressed as a percentage) for this model. Then we define the
j-th variance inflation factor as

VIFj =
1

1− R2j

Moreover, a VIF bigger than 10 indicate that the multicollinearity may cause
problems. Looking at our results, we have the VIF is smaller than 2 for all the
variables, thus we do not have collinearity problems for all the variables. [5]

(d) We should check the assumption of

• constant variance by using the plot of the standardized residuals versus the
fitted values;

• non-linear terms by using the plot of the standardized residuals versus
Velocity and Angle separately;

• normality by using the Q-Q plot of the standardized residuals.

[4]

(e) The plots on the left shows some indication that the variance is increasing and
moreover we have a few influential points and we should check for the outliers,
thus through the leverage or Cook’s distance plots. Moving to the right plot, we
have some problems in both tails, but not a presence of heavy tails. Also in this
case, we should better check the Shapiro-Wilk test in order to check correctly the
normality assumption. [3]

c© Queen Mary University of London (2021) Continue to next page



MTH5120 (2021) Page 7

280 300 320 340 360

−
2

−
1

0
1

2
Std res vs fits

fitsfinalmodQ3

s
td

r
e
s
fi
n
a
lm

o
d
Q

3

−2 −1 0 1 2

−
2

−
1

0
1

2

Q−Q Plot

Theoretical Quantiles

S
a
m

p
le

 Q
u
a
n
ti
le

s
Figure 1: Plot of standardized residuals versus fitted values (left) and QQ plot (right)
for the model with three explanatory variables.

Question 4 [20 marks]. This question is similar to examples in the lecture notes.

(a) The least square estimates β̂ is written as the product of two different matrices:

β̂ =
(
XTX

)−1
XTY

=

30.930 4.811 −6.679
4.811 3.945 −1.177
−6.679 −1.177 1.449

 223.00145.428

1064.724

 =

 4.300

−1.338
0.172


Thus the fitted model is equal to

yi = 4.300− 1.338x1i + 0.172x2i

[4]

(b) We can construct the ANOVA table by defining all the different elements of
interest. We start from SST , which is

SST = Y
TY − nȳ2 = 1082.723− 46× (4.848)2 = 1.65

Then we move to SSR, which is equal to

SSR = β̂
T
XTXβ̂− nȳ2 = 1081.574− 1081.073 = 0.501

Thus, SSE is

SSE = SST − SSR = 1.65− 0.501 = 1.149

In conclusion, we can compute the ANOVA Table as

[9]
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Source df SS MS F
Regression 2 0.501 0.25 9.378
Residuals 43 1.149 0.027
Total 45 1.65

(c) The average leverage is p
n
. A case for which hii > 2

p
n

is considered a high leverage
case and one with hii > 3

p
n

is considered a very high leverage case, where hii are
the diagonal elements of the matrix H.

In our case, n is equal to 46, while p is equal to 3, thus the high leverage happens
for hii > 2

3
46

= 0.13 and the high leverage for hii > 3
3
46

= 0.196.

Looking at the diagonal elements of H, we have that the fifth (0.135), fifteenth
(0.198), twenty-seventh (0.131) and twenty-eighth (0.139) are bigger than 0.13.
Moreover only the fifteenth element (0.198) is bigger than 0.196. [4]

Question 5 [12 marks]. This question is similar to examples in the lecture notes.

(a) We find that the general linear regression model could be defined as

Y = Xβ+ ε, ε ∼ N (0, σ2I)

where

Y =


y1
y2
...
yn

 , X =


x1 z21
x2 z22
...

...
xn z2n

 , β =

(
β1
β2

)
, ε =


ε1
ε2
...
εn


[5]
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(b) We find the least square estimators by multiplying (XTX)−1 and XTY , thus

β̂ = (XTX)−1XTY

In our case

(XTX) =

(
x1 x2 . . . xn
z21 z22 . . . z2n

)
x1 z21
x2 z22
...

...
xn z2n

 =

( ∑
x2i

∑
xiz

2
i∑

xiz
2
i

∑
z4i

)

We can compute the inverse as

(XTX)−1 =
1∑

x2i
∑
z4i − (

∑
xiz

2
i )
2

( ∑
z4i −

∑
xiz

2
i

−
∑
xiz

2
i

∑
x2i

)
The product of X and Y is

XTY ==

(
x1 x2 . . . xn
z21 z22 . . . z2n

)
y1
y2
...
yn

 =

(∑
xiyi∑
z2iyi

)

Combining all the elements leads to the following least square estimator

β̂ =

(
β̂1
β̂2

)
=

1∑
x2i
∑
z4i − (

∑
xiz

2
i )
2

( ∑
z4i −

∑
xiz

2
i

−
∑
xiz

2
i

∑
x2i

)(∑
xiyi∑
z2iyi

)
=

1∑
x2i
∑
z4i − (

∑
xiz

2
i )
2

(∑
z4i
∑
xiyi −

∑
xiz

2
i

∑
z2iyi∑

x2i
∑
z2iyi −

∑
xiz

2
i

∑
xiyi

)
[6]

(c) Based on the definition of the hat matrix, H, initially, we prove that it is
symmetric

HT =
(
X(XTX)−1XT

)T
= (XT)T((XTX)−1)TXT

= X(XTX)−1XT = H

Thus H is symmetric, since XTX is symmetric and (XTX)−1 is symmetric.

Moving to the idempotent proof, we have

HH = X(XTX)−1XTX(XTX)−1︸ ︷︷ ︸
I

XT

= X(XTX)−1XT

= H

Thus H is idempotent. [4]

End of Paper.
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