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Question 1 [23 marks]. Consider the curve

C =
{
(x, y) ∈ R2 | (x− 1)2 + 4(y+ 1)2 = 4},

and consider the following parametrisation of C:

γ : R → C, γ(t) = (1+ 2 cos t, −1+ sin t).

(a) Sketch the image of γ. [6]

(b) Find the unit normals to C at the point (1, −2). Draw and label these on
your sketch from part (a). [8]

(c) Assume C is also given the clockwise orientation. Compute the curve integral∫
C

F · ds,

where F is the vector field on R2 given by

F(x, y) = (−y, x)(x,y). [9]

(a) [Seen similar] The image of γ is drawn in red. [6 marks] (Here, one needs not be
exact—the general shape of γ along with a few key values of γ would suffice.)
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(b) [Seen] First, note that (1, −2) corresponds to

(1, −2) = γ
(
−π

2

)
. [1 mark]

Taking a derivative, we see that

γ ′(t) = (−2 sin t, cos t), γ ′(−π
2

)
= (2, 0),

∣∣γ ′(−π
2

)∣∣ = 2. [2 marks]

Thus, the unit tangents are given by

t± = ±
γ ′(−π

2

)∣∣γ ′
(
−π

2

)∣∣ = ±(1, 0)(1,−2). [2 marks]

By rotating, we obtain the unit normals

n± = ±(0, 1)(1,−2). [1 mark]

The answer can also be obtained via the gradient of (x− 1)2 + 4(y+ 1)2. [3 marks for
correct gradient, 3 marks for applying level set theorem correctly.]

The unit normals are drawn as blue arrows on the sketch in part (a). [2 marks]

(c) [Seen similar] Consider the restricted parametrisation of C given by

λ : (0, 2π) → C, λ(t) = (1+ 2 cos t,−1+ sin t).

Note that λ is injective, and its image is all of C except for a single point. [2 marks]
Moreover, note that λ generates the anticlockwise orientation of C, which is opposite of
our given orientation. As a result, we have that∫

C

F · ds = −

∫
λ

F · ds. [2 marks]

Next, we compute the necessary quantities:

F(λ(t)) = (1− sin t, 1+ 2 cos t)(1+2 sin t,−1+cos t),
λ ′(t)λ(t) = (−2 sin t, cos t)(1+2 sin t,−1+cos t),

F(λ(t)) · λ ′(t)λ(t) = −2 sin t+ 2 sin2 t+ cos t+ 2 cos2 t
= 2− 2 sin t+ cos t. [3 marks]

Thus, putting all the above together, we compute that∫
C

F · ds = −

∫ 2π

0

(2− 2 sin t+ cos t)dt

= − (2t+ 2 cos t+ sin t)|t=2π

t=0

= −4π. [2 marks]
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Question 2 [25 marks]. Consider the surface

S = {(x, y, z) ∈ R3 | (x+ z)2 + (y+ z)2 = 1, 0 < z < 2},

and consider the following parametrisation of S:

σ : R× (0, 2) → S, σ(u, v) = (−v+ cosu, −v+ sinu, v).

(a) Sketch the image of σ. Moreover, on your sketch, indicate (i) one path obtained
by holding v constant and varying u, and (ii) one path obtained by holding u

constant and varying v. [8]

(b) Find the tangent plane to S at the point (−1, 0, 1). [7]

(c) Compute the surface integral ∫∫
S

F dA,

where F is the real-valued function given by

F(x, y, z) =
1√

1+ (x+ z)(y+ z)
, where 1+ (x+ z)(y+ z) > 0. [10]

(a) [Seen similar] The image of σ is drawn below [4 marks]; examples of level paths are
drawn in (i) blue [2 marks] and (ii) purple [2 points], respectively. (Here, one needs not
be exact—getting the general shape of σ along with a few key values of σ would suffice.)
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(b) [Seen] The partial derivatives of σ satisfy

∂1σ(u, v) = (− sinu, cosu, 0), ∂2σ(u, v) = (−1,−1, 1). [2 marks]

Noting that (−1, 0, 1) = σ
(
1, π

2

)
[2 marks], we then compute

∂1σ

(
1,

π

2

)
= (−1, 0, 0), ∂2σ

(
1,

π

2

)
= (−1,−1, 1). [2 marks]

As a result, the tangent plane is given by

T(−1,0,1)S = Tσ

(
1,

π

2

)
=

{
a · (−1, 0, 0)(−1,0,1) + b · (−1,−1, 1)(−1,0,1)

∣∣a, b ∈ R
}

. [1 mark]

(c) [Seen similar] To obtain an appropriate parametrisation, we restrict σ to

ρ : (0, 2π)× (0, 2) → S, ρ(u, v) = (−v+ cosu, −v+ sinu, v).

Note that ρ is injective, and its image is all of S except for a line. [2 marks]

Moreover, direct computations (see also (b)) yield

∂1ρ(u, v) = (− sinu, cosu, 0), ∂2ρ(u, v) = (−1,−1, 1), [1 mark]

as well as

∂1ρ(u, v)× ∂2ρ(u, v) = (cosu, sinu, cosu+ sinu),

|∂1ρ(u, v)× ∂2ρ(u, v)| =
√

cos2 + sin2 u+ (cosu+ sinu)2

=
√
2+ 2 cosu sinu,

F(ρ(u, v)) =
1√

1+ cosu sinu
[4 marks]

Combining the above, we then obtain∫∫
S

F dA =

∫∫
(0,2π)×(0,2)

√
2+ 2 cosu sinu

1√
1+ cosu sinu

dudv

=
√
2

∫ 2π

0

du

∫ 2

0

dv

= 4
√
2π. [3 marks]
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Question 3 [20 marks]. Using the method of Lagrange multipliers, find the
minimum and maximum values of the function

f : R3 → R, f(x, y, z) = x+ z,

subject to the constraint
x2 + 4y2 + z2 = 4.

Also, at which points are these minimum and maximum values achieved? [20]

[Seen similar] First, notice the constraint surface x2 + 4y2 + z2 = 4 (an ellipsoid) is both
closed and bounded, thus the maximum and minimum values in this constrained
optimisation problem are guaranteed to exist. [2 marks]

Let g denote the function corresponding to the constraint:

g : R3 → R, g(x, y, z) = x2 + 4y2 + z2.

First, we compute the gradients of f and g:

∇f(x, y, z) = (1, 0, 1)(x,y,z), ∇g(x, y, z) = (2x, 8y, 2z)(x,y,z).

The method of Lagrange multipliers then indicates that we must solve the system,

1 = λ · 2x, 0 = λ · 8y, 1 = λ · 2z, x2 + 4y2 + z2 = 4. [4 marks]

First, note from the first and third equations that none of x, z, λ can be zero, or we
obtain a contradiction 1 = 0 [2 marks]. To solve the system, we now split into cases:

• If y ̸= 0, then 8λy ̸= 0, and the second equation yields a contradition. Thus, the
case y ̸= 0 yields no solutions to our system. [2 marks]

• If y = 0, then the second equation trivially holds, and the fourth equation yields

x2 + z2 = 4.

Moreover, the first and third equations imply

1

2x
= λ =

1

2z
, x = z.

Combining all the above equations then yields

2x2 = 4, z = x = ±
√
2.

Recalling that λ = 1
2x

, we see that the above yields two solutions to the system:

(x, y, z, λ) =

(
+
√
2, 0,+

√
2,+

1

2
√
2

)
,

(
−
√
2, 0,−

√
2,−

1

2
√
2

)
. [6 marks]
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Thus, our system has precisely two solutions, as listed above.

We can now evaluate f at each of the above solution points:

f(+
√
2, 0,+

√
2) = +2

√
2, f(−

√
2, 0,−

√
2) = −2

√
2. [2 marks]

Since the extrema of f are guaranteed to exist, we can hence conclude that:

• The maximum is +2
√
2, achieved at (x, y, z) = (+

√
2, 0,+

√
2). [1 mark]

• The minimum is −2
√
2, achieved at (x, y, z) = (−

√
2, 0,−

√
2). [1 mark]

© Queen Mary University of London (2023) Turn Over



Page 8 MTH5113 (2023)

Question 4 [18 marks].
(a) Give a parametrisation of the curve

P = {(x, y) ∈ R2 | x2 − 2xy = −4}

whose image contains the point (2, 2). [6]

(b) Is the following set connected:

E = {(x, y) ∈ R2 | 1 ≤ |x| ≤ 2}?

Briefly justify your answer. (You may draw E to aid in this.) [6]

(c) Consider the unit circle

C = {(x, y) ∈ R2 | x2 + y2 = 1}.

For each of the following parametrisations of C, state whether it generates the
anticlockwise or clockwise orientation of C:

(i) γ1 : R → C, where γ1(t) = (− cos t, sin t).
(ii) γ2 : (−1, 1) → C, where γ2(t) =

(
t,

√
1− t2

)
.

(iii) γ3 : (−1, 1) → C, where γ3(t) =
(√

1− t2, t
)
. [6]

(a) [Seen] One way to do this is to set t = x, and to note that

y =
t2 + 4

2t
=

t

2
+

2

t
.

This results in the following parametrisation:

γ : (0,∞) → P, γ(t) =

(
t,

t

2
+

2

t

)
.

(Note that (2, 2) = γ(2).) [4 marks for correct formula] [2 marks for correct domain]

(b) [Unseen] Note that E consists of two disconnected strips,

E− = {(x, y) ∈ R2 | −2 ≤ x ≤ −1}, E+ = {(x, y) ∈ R2 | 1 ≤ x ≤ 2} [3 marks].

[Alternatively, 3 marks for a correct sketch of E.]

Observe that one cannot go from a point p ∈ E− to another point q ∈ E+ without
leaving E. (In particular, the x-coordinate must be between −1 and 1 at some point.)
As a result, E is not connected. [3 marks]

(c) [Seen similar]
• γ1 generates the clockwise orientation of C [2 marks]

• γ2 generates the clockwise orientation of C [2 marks]

• γ3 generates the anticlockwise orientation of C [2 marks]
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Question 5 [14 marks]. Consider the vector fields F and G on R3 given by
F(x, y, z) = (−y+ xz, x+ yz, 0)(x,y,z), G(x, y, z) = (−y, x, 2)(x,y,z).

(a) Show that ∇× F = G. [5]

(b) Let E be the half-sphere
E = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1, z > 0},

and suppose E is given the outward-facing (i.e. upward-facing) orientation. Apply
Stokes’ theorem and part (a) to show that∫∫

E
G · dA = 2π. [9]

(a) [Seen] This is a direct computation using the definition of curl:
(∇× F)(x, y, z)

= (∂y0− ∂z(x+ yz), ∂z(−y+ xz) − ∂x0, ∂x(x+ yz) − ∂y(−y+ xz))(x,y,z) [3 marks]
= (−y, x, 2)(x,y,z). [2 marks]

(b) [Unseen] Let C denote the boundary of E , the equatorial circle:
C = {(x, y, 0) ∈ R3 | x2 + y2 = 1}.

Then, by Stokes’ theorem and part (a), we obtain that∫∫
E

G · dA =

∫∫
E
(∇× F) · dA =

∫
C

F · ds, [4 marks]

where C is given the positive orientation relative to E , which here is the anticlockwise
orientation when viewed from above.

To evaluate the above curve integral, we note that
γ : (0, 2π) → C, γ(t) = (cos t, sin t, 0)

is an injective parametrisation of C whose image is all of C except for a single point, and
that γ generates the above-mentioned positive orientation of C. [2 marks] As a result,∫∫

E
G · dA = +

∫ 2π

0

[F(γ(t)) · γ ′(t)]dt

=

∫ 2π

0

[(− sin t+ cos t · 0, cos t+ sin t · 0, 0) · (− sin t, cos t, 0)]dt [2 marks]

=

∫ 2π

0

dt

= 2π. [1 mark]

End of Paper.
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