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Question 1 [25 marks].

(a) Let f : (a, b) ! R be a real valued function. State the definition for f to be

di↵erentiable at a point x 2 (a, b). [5]

[book]

Let x 2 (a, b), f : (a, b) ! R. The derivative of f at x is defined as

f
0
(x) = lim

h!0

f(x+ h)� f(x)

h
= lim

x!x

f(x)� f(x)

x� x
.

If this limit exists then f is di↵erentiable at x.

(b) Consider the following function, g : (0,1) ! R given by

g(x) =
p
x.

Using the definition of derivative, compute the derivative of g. [5]

[book]

lim
h!0

p
x+ h�

p
x

h
= lim

h!0

p
x+ h�

p
x

h
⇥

p
x+ h+

p
xp

x+ h+
p
x

= lim
h!0

x+ h� x

h(
p
x+ h+

p
x)

, as h 6= 0

= lim
h!0

1p
x+ h+

p
x
=

1

2
p
x
.

(c) Let f : R ! R be the function given by

f(x) =

⇢
x
2
sin

�
1
x2

�
, x > 0,

0, x  0.

Is f di↵erentiable? (Fully explain your answer) [5]

[unseen]

We have

f(x)� f(0)

x� 0
= x sin

1

x2
.

Note that

����sin
1

x2

����  1
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which gives

����limx!0
x sin

1

x2

���� = lim
x!0

����x sin
1

x2

����  lim
x!0

|x| = 0

hence

f
0
(0) = lim

x!0

✓
x sin

1

x2

◆
= 0.

(d) State the Mean Value Theorem. [5]

[book]

Suppose that f : [a, b] ! R is continuous on [a, b] and di↵erentiable on (a, b).

Then there exists c 2 (a, b) such that

f
0
(c) =

f(b)� f(a)

b� a
.

(e) Let f : R ! R be a di↵erentiable function. Show that if |f 0
(c)|  M for all c 2 R

then for all x, y 2 R we have

|f(x)� f(y)|  M |x� y|. [5]

Without loss of generality, assume that y > x. We then apply the Mean Value

Theorem on [x, y]. We obtain

f(y)� f(x) = f
0
(⇠)(y � x)

for some ⇠ 2 (x, y). This implies that

|f(x)� f(y)|  |f 0
(⇠)||y � x|  M |y � x|.

[book]

Question 2 [25 marks].

(a) State the definition of a uniformly continuous function. [5]

[book]

Suppose that f : I ! R where I is an interval. We say that f is

uniformly continuous on ⌦ if for every " > 0, there exists � = �(") such that for

all x, y 2 I where |x� y| < � then |f(x)� f(y)| < ". More compactly this means

8" > 09� > 08x, y 2 ⌦ | |x� y| < � =) |f(x)� f(y)| < "
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(b) Prove that f(x) =
1
x is uniformly continuous on [a, 2], 0 < a < 2. [5]

Let " > 0 be given. Now consider x, y 2 [a, 2]. It follows that

|f(x)� f(y)| =
����
1

x
� 1

y

���� =
|x� y|
|x||y|  |x� y|

a2

as |x|, |y| � a. Hence if we choose � = a
2
" then |x� y| < � = a

2
" implies

|f(x)� f(y)| =
����
1

x
� 1

y

���� < ".

Alternatively, the function
1
x is a continuous function on a closed bounded interval

and hence uniformly continuous.

[book]

(c) Let fn(x) =
1
nx

n2
, x 2 [�1, 1].

(i) For each x 2 [�1, 1] compute limn!1 fn(x). [5]

[unseen]

Note that

lim
n!1

|fn(x)| = lim
n!1

|xn2 |
n

 lim
n!1

1

n
= 0.

Hence we have that f(x) = 0.

(ii) For each x 2 [�1, 1] Let f(x) = limn!1 fn(x). Does fn converge to f

uniformly on [�1, 1]? Justify your answer. [5]

[unseen]

Yes. We have

|fn(x)� f(x)| = |fn(x)| =
|x|n2

n
 1

n
.

Hence we we choose " >
1
n or n >

1
" where n is independent of x, we see that

fn converges uniformly to f ⌘ 0.

(iii) Show that the following limit exists and compute its value,

lim
n!1

Z 1

�1

fn(x)dx.

[5]

[unseen]
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As fn converges uniformly to f and each fn is continuous, we may

interchange the integral and limit to get that

lim
n!1

Z 1

�1

fn(x)dx =

Z 1

�1

lim
n!1

fn(x)dx =

Z 1

�1

0dx = 0.
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Question 3 [25 marks].

(a) State the Inverse Function Theorem. [5]

[book]

Let f be a one-to-one continuous function on an open interval I and let J = f(I).

If f is di↵erentiable at x0 2 I and if f
0
(x0) 6= 0 then f

�1
is di↵erentiable at

y0 = f(x0) and

(f
�1
)
0
(y0) =

1

f 0(x0)
.

(b) Let f(x) = exp(x), x 2 R. Show that f is invertible and if g(y) = f
�1
(y) is the

inverse of f , compute the derivative of f
�1
(y) in terms of y. [5]

[unseen]

Since f
0
(x) = exp(x) > 0 it follows that f is strictly increasing and therefore f is

injective. We find that if y = f(x) = exp(x) then by the inverse function theorem

(f
�1
)
0
(y) =

1

f 0(x))
=

1

exp(x)
=

1

y
.

(c) Let h : (�1, 1) ! R be the function given by

h(x) =
1

1 + x
.

Using any correct method, compute the Taylor series of h about x = 0 together

with its interval of convergence. [7]

[book]

The series is the geometric series for |x| < 1 and the Taylor series coincides with

its power series expansion hence

1X

n=0

(�x)
n
=

1

1 + x
.

Alternative method is simply to compute the derivatives of h to n-th order. In

this case, proving by induction,

d

dx
h(x) = (�1)

n n!

(1 + x)n+1

Hence we have that

d
n

dxn
h(x)

����
x=0

= (�1)
n
n!
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Therefore the Taylor series about x = 0 is given by

Th(x) =

X

k=0

f
(k)
(0)

k!
x
k

=

1X

k=0

(�x)
n
.

The radius of convergence is then given by

R = lim
n!1

����
an+1

an

���� = 1.

Therefore R = 1. At x = 1 and x = �1 the series diverges, hence the interval of

convergence in (�1, 1)

(d) Compute the antiderivatives of h. [2]

The antiderivatives if h are given by log(|x+ 1|) + c.

(e) Using part (d) above give a Taylor expansion for log(1 + x) about x = 0 together

with its interval of convergence. [6]

[unseen]

Since
P1

n=0(�x)
n
converges uniformly to

1
1+x on its interval of convergence, we

may integrate term by term

log(1 + x) =

Z x

0

1

1 + t
dt

=

Z x

0

1X

n=0

(�1)
n
t
n
dt

=

1X

n=0

(�1)
n

Z x

0

t
n
dt

=

1X

n=0


1

n+ 1
t
n+1

�x

0

=

1X

n=0

(�1)
n
x
n+1

n+ 1
.

The radius of convergence is the same as for h so R = 1. At x = 1 the series

converges as it is an alternating harmonic series and at x = �1 the series diverges

as it is a harmonic series. Hence the interval of convergence is (�1, 1].
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Question 4 [20 marks].

(a) State the Mean Value Theorem for Integrals. [5]
[book]

Let f be a continuous function on [a, b] then there exists c 2 [a, b] such that

Z b

a

f(x)dx = f(c)(b� a).

(b) Consider the function g : [0, 1] ! R, g(x) = x.

(i) Show that g is Riemann integrable. [2]

[book]

g is a continuous function on a closed bounded interval [0, 1] and hence is

Riemann integrable.

(ii) Show that the upper sum U(g, Pn) of g for the equidistant partition

Pn =

⇢
x0 = 0, · · · , xk =

k

n
, · · · , xn = 1

�
. [6]

satisfies limn!1 U(g, Pn) =
1
2 .�

You may use the formula,
Pn

k=1 k =
n(n+1)

2 , or any other correct method.
�

We find that as 4 =
1
n

Mk = sup

[ k�1
n , kn ]

g(x) =
k

n
.

Therefore

U(g, Pn) =

nX

k=1

Mk(xk � xk�1)

=

nX

k=1

k

n2

=
n(n+ 1)

2n2
.

Therefore

lim
n!1

U(g, Pn) = lim
n!1

n(n+ 1)

2n2
=

1

2
.

[seen]
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(iii) Using part (i) and (ii) compute the integral
R 1

0 g(x)dx. [2]

Since g is Riemann integrable we have
R 1

0 g(x)dx = limn!1 U(g, Pn) =
1
2 .

[unseen]

For the remainder of this question, let f : [a, b] ! R denote a continuous function.

(c) Let F,G be antiderivatives of f . What is the relation between F and G?

[book]

If G
0
(x) = f(x) on (a, b) then we have G

0 � F
0
= (G� F )

0
= f � f = 0 so that

G� F = c so G = F + c, where c 2 R. Hence F and G di↵er by a constant. Also

this gives us

Z b

a

f(x)dx = G(b)�G(a) = F (b) + c� F (a)� c = F (b)� F (a).

(d) Let f : R ! R and denote by H the following function,

H(x) =

Z x+1

x�1

f(t)dt.

Show that H is di↵erentiable and find its derivative. [5]

[unseen]

Since f is continuous on R we let F be an antiderivative of f . This implies that

Z x+1

x�1

h(t)dt = F (x+ 1)� F (x� 1) = H(x).

As F is a di↵erentiable function, so is H. Finally computing the derivative using

the chain rule, we get

H
0
(x) = F

0
(x+ 1)� F

0
(x� 1)

= f(x+ 1)� f(x� 1).

End of Paper.
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