MTH5113 (2023/24): Problem Sheet 9
Solutions

(1) (Warm-up)

(a) Consider the (real-valued) function
F:R> > R, F(x,y,z) = xy’z’,
as well as the parametric surface
P:(0,1) x (0,1) = R, P(u,v) = (1, u, v).

Compute the surface integral of F over P.

(b) Consider the (real-valued) function
G:RP> R, G(xy,z) =x>+12%

as well as the parametric surface

T:(0,2m) x (0,1) — R, T(u,v) = (veosu, vsinu, v).

Compute the surface integral of G over T.

(a) We begin by computing some required quantities. Differentiating P yields

alP(u’V) - (O> ]a O), aZP(u>V) — (0) O’ 1)7

and their cross product satisfies

01P(u,v) x 9,P(u,v) = (1,0, 0), |0:P(u,v) x 0,P(u,v)|=1.

Furthermore, observe that

F(P(u,v)) = F(1, u, v) = u’v>.



Thus, by the definition of the (parametric) surface integral, we obtain
JJ FdA = J F(P(u,Vv))[01P(u,v) x 0,P(u,v)| dudv
P (0,1)x(0,1)

1
= J (u®v* - 1) dudv

= | u duJ v dv

(b) First, we differentiate T,
017(u,v) = (—vsinu, vcosu, 0), 0,7(u,v) = (cosu, sinu, 1),
and we compute their cross product:

017(w,v) x 9;7(u,v) = (veosu, vsinu, —v), 19t(u,v) x 9,t(w,v)| = V2 - v.

In addition, note that

2 2

2coszu—l—vzsin u=v-.

G(t(uw,v)) = G(vcosu, vsinu, v) =v

Using the above, we can now evaluate the given surface integral:

JJ GdA—JJ (v - v/2v) dudv
. (0,271) % (0,1)
27t 1
= \fZJ duJ v dv
0

0

1
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(2) (Intro to surface integrals) One can also define an intermediate notion of surface inte-

gration of vector fields over parametric surfaces. More specifically:

Definition. Let o : U — R3 be a parametric surface, and let F be a vector field that



is defined on the image of y. We then define the surface integral of F over o by
JJ F.-dA = JJ {F(o(u,v)) - [010(u,Vv) x 020(u, V)]s ) dudv.
o u

(a) Consider the vector field F on R?® given by
F(X)y)z’) - (y) ZSSOO€X2000+46y1523) X) )
(x,y,2)
and let P be the parametric plane
P:(0,1) x(0,1) = R, P(u,v) = (1, u, v).

Compute the surface integral of F over P.

(b) Consider the vector field G on R?® given by
G(x,y,z) = (2, z, X* +y2)(x’y,z],
and let T be the parametric torus
T:(0,2m) x (0,1) - R®,  1(u,v) = (veosu, vsinu, v).

Compute the surface integral of G over T.

(c) Consider the vector field H on R? given by
H(x,y,2) = (=%, =Y, Z)(xy2),
and let q be the (regular) parametric surface
q:(0,1) x (0,1) = R3, q(u,v) = (u, v, u? +1?).

Compute the surface integral of H over q.

(a) We begin by computing some preliminary quantities:

aIP(u>V) X aZP(u>v) - (O) ]) O) X (O> O) ])
:(]a()) O)



F(P(u,v)) - F(],LL,\))

_ (u, V38014652 1) 7
P(u,v)
for any (u,v) € (0,1) x (u,1). The above then implies

F(P(u,v)) - [0:P(u,v) x ;P (w,v)]pp,y) = (u, VB0 T HAELIE 1) (1,0, 0)

=u.
Thus, recalling our definition of parametric surface integral, we obtain

JJ F.dA = J {F(P(u,v)) -[01P(u,v) X azP(u,V)]p(u,V)} dudv
P (0,1)x(0,1)

= J u dudv
v (0)])><(07])

r1 1
= va udu
J 0

0
1
7

(b) First, we compute, for any (u,v) € (0,27) x (0,1),

017t(u,v) x 0;t(u,v) = (—vsinu, vcosu, 0) x (cosu, sinu, 1)
= (vcosu, vsinu, —Vv)
G(t(u,v)) = ( ’
= (v,

v, v, v? cos? u + V¥ sin W)

)T (uyv)-
Combining the above, we then obtain

G(t(u,v)) - [O17T(u,v) x B7T(U, V)l = (v, v, v?) - (veosu, vsinu, —v)

:vzcosu+vzsinu—v3.

Thus, by our given definition of surface integrals,
JJ G dA = JJ {G(t(u,v)) - O17(w,v) x 37(uy )]z } dudv
T (0,271) % (0,1)

1 p2n
:J ,[ (v cosu + v sinu —v?) dudv
0 Jo



1
= J (Vi sinu —v? cosuw — v u) =" dv
0

1
= —ZT[J Vv dv
0

(c) First, note that for any (u,v) x (0,1) x (0, 1), we have

1,0, 2u) x (0, 1, 2v)

a1q(u,v) X alq(u) ) (
- ( —2u, —2v, 1),
(

Finally, using the above, we can evaluate the desired surface integral:

JEX

j (a(w,v) - 1, v) x 320(1, Vg + dudv

A
J J (3u? + 3v?) dudv
2.

(3) (A Survey of Integration) Let S denote the set
S ={(w,v,u? —v}) e R*| (u,v) € (0,1) x (0, 1)}.

(a) Show that S is a surface. In addition, give an injective parametrisation of S whose

image is precisely all of S.

(b) Compute the surface integral over S of the real-valued function
F:R> >R, F(x,y,z) = xy.

(The double integral you get from expanding the surface integral is not so pleasant; you

will probably have to use the method of substitution twice to compute it.)

(c) Let us also assign to S the upward-facing orientation, i.e. the orientation in the positive



z-direction. Then, compute the surface integral over S of the vector field

G(X>y)Z) - (Xyz> yxz> 1)(X,y,z)7 (x,y,z) € R3-

(a) S is a surface, since it is the graph of the (smooth) function
f:(0,1) x(0,1) — R, f(u,v) = u? — v
Furthermore, an injective parametrisation of all of S is given by

o:(0,1) x (0,1) = S, o(u,v) = (u, v, u? —v?).

(b) We begin by computing the partial derivatives of o:
010(u,v) = (1,0, 2u), 020(u,v) = (0, 1, —2v).
Taking a cross product of the above yields

070(u,v) x 00(u,v) = (—2u, 2v, 1),

[010(u,v) x 0,0(u,v)| = V1 +4u? 4 4v2.

Now, by part (a), we know that o is an injective parametrisation of S whose image is all of

S. Thus, we can use o to compute our surface integral:

[ron-fron

To calculate the above, we first note that
F(o(u,v)) = F(u,v,u? —v?) = uv.

Thus, our surface integral can now be expanded as

JJ FdA = JJ (uvv 1+ 4u? + 4v2> dudv.
S (0,1)%x(0,1)



This can now be evaluated using Fubini’s theorem and the method of subsitution:

1 1
JJ FdA:J v U uy/ 1 +4u2+4v2du} dv
S 0

0
R Tha
:J Vv [EU —l—4u2—|—4v2)2} dv

12 20 v=0
_ 9%_5%_5%+1§>

240

61 5V5
=20 a4 (Sorry ©)

(Even if you were not able to get the final number, the most important part is that you can

correctly expand the surface integral into a double integral.)
(c) First, recall from part (b) that
0i0(uw,v) x 0,0(u,v) = (—2u, 2v, 1),

hence it follows that o generates the upward-facing orientation of S. Consequently, we can

use the parametrisation o to compute our surface integrals:

JJ G -dA = +JJ {G(o(w,v)) - [010(u,v) x 0,0(u, v)]5v ) dudv.
S u

To calculate the above, we observe that
G(O‘(U,V)) - (uvz) VUZ, 1)0(11,\;)7
and hence
2

G(o(u,Vv)) - D101, v) x 020(Uy V)lgaw) = (Wi, vu?, 1) - (=2u, 2v, 1) = 1.

Therefore, we conclude that

JJG-dA:JJ Tdudv =1.
S (0,1)x(0,1)



(4) [Marked] Let C denote the following disconnected surface:
C={xy,2) eR | X*+y*=1Ux*+y* =4 —1<z<1}

which describes a small cylinder surrounded by a larger cylinder. Moreover, let us orient

C such that the outer cylinder has outward orientation and the inner cylinder is oriented

mwards.
(a) Sketch this surface.

(b) Compute the surface integral over C of the function

Xy 2
RP >R =——2 4+ =
G — R, G(x,y,z) c + 3

. X . . . _ 1—cos(2x)
Some useful hints: 2sin(x) cos(x) = sin(2x) and sin*(x) = 3

(c) Compute the surface integral over C of the vector field H on R? given by

H(X> Yy, Z) = (y> X,y Z)(x,y,z);

(a) A sketch of this figure is shown here




[1 mark for somewhat correct sketch]

(b) The first step is to parametrise C appropriately. Since this surface is disconnected, we
need two parametrizations. The outer cylinder has outward orientation, so for this portion

of the surface we will parametrize it as follows:
Oout & (0,271) x (—1,1) — C, Oout (U, v) = (2cosu, 2sinu, v).

For the inner cylinder, we will choose to parametrize such that the parametrization aligns

with the orientation of the surface, thus we choose:
Oin & (0,27) x (—1,1) — C, Oin(u,v) = (cosu, —sinu, v).

Observe 0y, U 0oy is injective, and its image is C up to a pair of lines. [2 marks for correct

parametrisation]
For the outer cylinder, we compute

0106ut (U, v) —2sinu, 2cosu, 0),

u,v) = (
02064 (u,v) = (0, 0, 1),
0106ut (1, V) X 020,54 (U, v) = (2cosu, 2sinu, 0),

|07 00ut (U, V) X 02040 (U, V)| = 2.

Note that this parametrisation generates the orientation of C along the outer cylinder.

Similarly, for the inner cylinder we compute:

—sinu, —cosu, 0),
0,0, 1),

algin(u>v) (
(
(—cosu, sinu, 0),
1

0,01, (u,v) =
010 (W, v) X 0,05, (u,v) =

|a1Gin(u7V) X aZGin(u)\)N —

and again this parametrisation points inward along the inner cylinder, as needed. [2 marks
for correct calculations up to here][1 mark for correct observation of orientation]
Also we compute
A 5

G(Gout(u)v)”a]Gout(u)\)) X azoout(u>\))| — Z - gSin ucos-u ,



=V Lant(u),
— \:12 — 323(1 — cos(4u))
A similar computation yields
G(03,)|0105 (1, V) X 0201, (u, V)| = v—z — L(1 —cos(4u)) .
8§ 528

[1 mark for correct evalution]

We can nowcompute the surface integral over C:

JJ GdA—JJ GdA+JJ dA
C Oin Oout

- J J (G (01 (1ty v))131 01n (14, ¥) X 3205 (1 V)] + G (Tt (1t ¥))131 Gout (14, ¥) X 33T (1 V)] dusdv
(0,270) % (—1,1)

27 1 3\}2 1 1
Jo duJ1 dv ( 3 16 + 1c cos( u))

[1 mark for almost correct answer up to this point] From here, we directly compute

27t V3 v v v=1
— — — — 4+ — 4
JJCGdA L (8 16+16COS( u))v] du
w1
— JO (4 - g + g coa(4u)) du

u u 1 ‘ u=2m
— (4 - g + 37 5111(411))

7271 271771

48 4

u=0

[1 mark for somewhat correct integral]

(c) We have already done most of the work, as can again use the parametrisation Oy, /out
from (a). Recall that our parametrisations for the inner and outer cylinders are aligned with

the orientation of C, therefore we simply need to compute
H(oi (u,v)) - [0101 (u, v) X 0201, (u, v)] = sin(2u)
and

H(Gout(u>v)) : [610-01113(u)v) X aZGout(u)V)] — 4SIH(ZU)

10



[1 mark for computation]

[1 mark for an almost correct answer]

(5) [Tutorial]

(a) Consider the surface (you may assume this is indeed a surface)
P ={(u,v,u*+v) e R®| (u,v) € (0,1) x (=1, 1)}.
Compute the surface integral over P of the following function:
F:R> > R, F(x,y,z) = 6x°.
(b) Consider the sphere,
S* ={(x,y,2) € R* [ > +y* + 2> =1},

and let S? be given the “outward-facing” orientation. Compute the surface integral
over S? of the vector field F on R? defined by the formula

F(%,Y,2) = (0,0,2%) xy.0)-

11



(a) The first step is to appropriately parametrise P. Observe that the map
o:(0,1) x (=1,1) = P, o(u,v) = (u, v, u* +v)

is a parametrisation of P. Moreover, note that o is injective, and its image is all of P. As a

result, we have, from the definition of surface integrals,

JLFdA B JLFdA B JJ(O,UX(—L]) Flo(u,v))dr0(u,v) x 0;0(w, v)| dudv.

Next, the partial derivatives of o satisfy
610(u,v) - (1) O) 4LL3), azG(u,V) - (O> 1) ])
Thus, the required terms in the above integrand satisfy

19,0(u,v) x 0,0(u,v)| = |(—4u, —1, 1)] = /2 + 16uS,

Flo(u,v)) = 6u’.
Combining all the above, we can now compute the surface integral as
JJdeA = J: E 6u5\/mdudv
=2 E eu’ \/m du

] 2 P u=1
20025 [(2+16u)2]u:
_13V2
-3

(b) Recall (from lectures and the lecture notes) that the parametrisation of S* given by
p:(0,27) x (0,71) — S?, p(u,v) = (cosusinv, sinusinv, cosv),

is injective, and that its image is “almost all” of §? (the image excludes only two points and

a semicircle). Moreover, from the usual computations, we have that

01p(u,v) X 02p(u,v) = —sinv - (cosusinv, sinusinv, cosv) = —sinv - p(u,v).

12



In particular, the arrows
[61 p(u,v) X aZp(u>v)]p(u,\)) = —sinv- p(u)v)p(u,v)a

which are normal to S?, point inward from S?. Thus, p generates the orientation opposite to

our given orientation of S?, and hence we have that

[ Faa——]] {F(p(w,v) - P1p(,v) X 020(1t,¥)]p(u } duudy.
S2 (0,271) % (0,7)

Note the integrand satisfies

F(p(u,v)) - [01p(u,v) x 92p(u, V)] ppy) = —sinv(0, 0, cos>v) - (cosusinv, sinusinv, cosv)

— —sinvcostv.

As a result,

27T pTC
JJ F-dA:J J sinv cos*v dvdu
s2 o Jo

=2m- 5 [— cos® V]V=X
A4
=<

(6) (A-levels, revisited)

(a) Show that the surface area of a sphere of radius v > 0,
ST = {(X,y,Z) € R3 | Xz —|—y2 + Zz — T,2}7

is equal to 47mr?.

(b) Show that the area of the side of a cone with base radius r > 0 and height h > 0,
2\ 2
Cin= {(x,y,z) ER|0<z<h x*+y?=1? (1 —}—L> },

is equal to 7try/12 + hZ.

13



(a) Similar to the case of a unit sphere, we see that
pr: (0,27) x (0,71) — S, pr(u,v) = (rcosusinv, rsinusinv, rcosv)

is an injective parametrisation of S;, whose image is all of S, except for two points and a

semicircle. Moreover, a direct calculation (analogous to the one for S?) shows that
10105 (1, v) X 320 (1w, V)| = [ = Tsinv - p(u,v)| = 1’ sinv.

As a result, we obtain

27t T
A(S,) = JJ r2sinv dudv = Y’ZJ duJ sinv dv = 47mr?.
(0,27) x (0,7) 0 0

(b) The main step is to parametrise C,y correctly. For this, we can take
0:(0,2m) x (0,h) — Cyp, o(u,v) = (r(1 —vh ) cosu, (1 —vh ") sinu,v).

In particular, o is injective, and its image is all of C,y except for a line. (Plot this out and

see for yourself!) Moreover, direct computations yield

9,0(u,v) = (—r(1 —vh " sinu, r(1 —vh ") cosu, 0),
9,0(u,v) = (—rh ' cosu, —rh'sinu, 1),
910(u,v) x 0,0(u,v) = (r(1 —vh ') cosu, 7(1 —vh ") sinu, Y h (1 —vh ™)),

A% T

|0;0(u,v) X 00(w,v)| =7 (1 — }_1) 1+ (}—1>2

Combining the above, we conclude that the surface area is

A(Crp) =1/ 1+ <%>2JJ(02ﬁ)X(O . (1 — %) dudv
=2mry/ 1+ <%>ZJ: (1 — %) dv

2 ()3

= 7trv/ 12 4+ hZ.

14



(7) (Reversal of orientations) Let S C R3 be an oriented surface, and let 0 : U — S be a

parametrisation of S. Moreover, define the set
U ={(v,u) [ (u,v) € U}
and define the parametric surface
o, U, — R3, o, (v,u) = o(u,v).

In other words, o, is precisely o but with the roles of u and v reversed.

(a) Show that for any (u,v) € U,
010+(v,u) x 0,0+(v,u) = —[d10(u,v) x 90(u,v)].

(b) Show that o, is also a parametrisation of S, and that o, has the same image as o.

(c) Use the formula from part (a) to conclude that if o generates an orientation O of S,

then o, generates the orientation opposite to O.

(a) We begin by relating the partial derivatives of o and o,—for any (v,u) € U,,

610}(\),11) - av[cr(v)u)] — av[G(u)V)] — aZG(u>V)7

0,0, (v,u) = 0, [0, (v, u)] = 0 [o(u,v)] = 0;0(u,Vv).
As a result, using that the cross product is antisymmetric, we conclude that

61()'T(\),LL) X aZGr(Vau) - aZG(ua\)) X 610(u,v)

= *[a]O-(U,V) X aZG(U,VH-

(b) First, suppose p is in the image of o, so that p = o(u,v) for some (u,v) € U. Then, by
definition, (v,u) € U, and o,(v,u) = o(u,v) = p, and it follows that p is also in the image
of 0,. Conversely, if p is in the image of o,, then p = o,(v,u) for some (v,u) € U,. This
then implies (u,v) € U and o(u,v) = o,(v,u) = p, and hence p is also in the image of o;.

From the above, we conclude that o and o, have the same image.

In particular, the above implies that the image of o, lies within S. Moreover, using the

15



formula obtained from part (a), we have, for any (v,u) € U,,

010%(v, u) X 020+(v, u)| = [970(u,v) x 0;0(u, V)| # 0,
since o is regular by assumption. This implies that o, is also regular.
Combining the above, we conclude that o, is indeed a parametrisation of S.

(c) For any point p = o(u,v) = o,(v,u) of S (where (u,v) € U), we have that:

o The orientation generated by o at p is given by

n,(w,v) = +[ 070(u,v) x 0,0(u,Vv) }
o(w,v)

[010(u,v) x 9;0(u, V)|

+ Recalling the result from (a), the orientation selected by o, at p is given by

910+ (v,11) X 3,07(v,
no_r (v) ) o +|: 1 (V, ) X 2 (V ) :|
or(vyu)

‘a](ﬂ(\),u) X aZGr(V)u”
B _[ 070(u,v) x 0,0(u,v) ]
o(w,v)

10;0(u,v) x 0,0(u, V)|

= —ny(u,v).

In particular, the above shows that o, generates the opposite unit normals as o, and hence

o, generates the orientation opposite to that of o.

(8) (The paradox of Gabriel’s horn) Consider the surface of revolution

G = {(x)y,z) cR3

1
y2+Z2:;,X>1},

which is sometimes nicknamed Gabriel’s horn. (Before proceeding, you should search for

“Gabriel’s horn” on Google Images to see an illustration of G.)

(a) Show that G has infinite surface area.

(b) Show that the interior of G,

I= {(x,y,z) € R?

1
2 2
Yy +z& < 2 X > 1} ,
has finite volume.

16



In other words, you can fill up the inside of the “horn” with a finite amount of paint, but

you cannot paint the “horn” itself using a finite amount of paint!

(a) To compute the surface area, we first parametrise G appropriately:

1 1

0:(1,00) x (0,27) — G, o(u,v) = (u, u ' cosv, u " sinv).

Note in particular that o is injective, and its image is all of G except for a curve. (The

reasoning here is analogous to that for Question (4).)

Next, we do some computations involving o:

d,0(u,v) = (1, —u?cosv, —u?sinv),

(0, —u'sinv, u ' cosv),

020(u, V)

-3 1 1

(—u™, —u ' cosv, —u 'sinv),

10;0(w,v) x 0,0(w,v)| =u "1 +u4,

070(u,v) x 00(u,v)

Combining the above with the definition of surface area, we conclude that

A(G) = JJ |010(u,v) x 020(u,v)| dudv
(1,00) x (0,27)
27t 0 1 1
0 1 u uw

Since 1+u* > 1 for all u € R, it follows that

o0

A(G) EZWJ ldu: lim Inu—1Inl = +oo.
;u u oo

Thus, we conclude that A(G) is indeed infinite.

(b) Recall the volume of T is
V(I) = ﬂ 1 dxdydz.
I

The easiest way to describe I in a way that is convenient for integration is to do a change of

variables and write y and z in terms of polar coordinates:

X =X, Yy =T1cos0, z =71sin0.

17



In particular, I can be described in these new coordinates as

[={x,1,0)eR|x>1,0<r<x' 0<6<2n}

Note that the Jacobian with respect to this change of variables is

1 0 0

0
M:det 0 cos® —rsind| =r.

J =t S n0)

0O sin® rcosH

Thus, by the change of variables formula and Fubini’s theorem, we have that

1

V(D) = r” | J J drdxde

0o J1 Jo
1

27t oo X
= J do J J rdrdx
0 1 0

1(*1
:2 . — _—
7T 2J1 dex

= 7L

Thus, the volume of I is indeed finite.
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