MTH5113 (2023/24): Problem Sheet 9 Solutions

(1) (Warm-up)
(a) Consider the (real-valued) function

$$
F: \mathbb{R}^{3} \rightarrow \mathbb{R}, \quad F(x, y, z)=x y^{2} z^{3}
$$

as well as the parametric surface

$$
\mathbf{P}:(0,1) \times(0,1) \rightarrow \mathbb{R}^{3}, \quad \mathbf{P}(u, v)=(1, u, v)
$$

Compute the surface integral of F over \mathbf{P}.
(b) Consider the (real-valued) function

$$
\mathrm{G}: \mathbb{R}^{3} \rightarrow \mathbb{R}, \quad \mathrm{G}(x, y, z)=x^{2}+y^{2}
$$

as well as the parametric surface

$$
\tau:(0,2 \pi) \times(0,1) \rightarrow \mathbb{R}^{3}, \quad \tau(u, v)=(v \cos u, v \sin u, v)
$$

Compute the surface integral of G over τ.
(a) We begin by computing some required quantities. Differentiating \mathbf{P} yields

$$
\partial_{1} \mathbf{P}(u, v)=(0,1,0), \quad \partial_{2} \mathbf{P}(u, v)=(0,0,1)
$$

and their cross product satisfies

$$
\partial_{1} \mathbf{P}(u, v) \times \partial_{2} \mathbf{P}(u, v)=(1,0,0), \quad\left|\partial_{1} \mathbf{P}(u, v) \times \partial_{2} \mathbf{P}(u, v)\right|=1
$$

Furthermore, observe that

$$
\mathrm{F}(\mathbf{P}(u, v))=\mathrm{F}(1, u, v)=u^{2} v^{3}
$$

Thus, by the definition of the (parametric) surface integral, we obtain

$$
\begin{aligned}
\iint_{P} F d A & =\iint_{(0,1) \times(0,1)} F(\mathbf{P}(u, v))\left|\partial_{1} \mathbf{P}(u, v) \times \partial_{2} \mathbf{P}(u, v)\right| d u d v \\
& =\int_{0}^{1} \int_{0}^{1}\left(u^{2} v^{3} \cdot 1\right) d u d v \\
& =\int_{0}^{1} u^{2} d u \int_{0}^{1} v^{3} d v \\
& =\frac{1}{12}
\end{aligned}
$$

(b) First, we differentiate τ,

$$
\partial_{1} \tau(u, v)=(-v \sin u, v \cos u, 0), \quad \partial_{2} \tau(u, v)=(\cos u, \sin u, 1)
$$

and we compute their cross product:

$$
\partial_{1} \tau(u, v) \times \partial_{2} \tau(u, v)=(v \cos u, v \sin u,-v), \quad\left|\partial_{1} \tau(u, v) \times \partial_{2} \tau(u, v)\right|=\sqrt{2} \cdot v
$$

In addition, note that

$$
\mathrm{G}(\tau(u, v))=\mathrm{G}(v \cos u, v \sin u, v)=v^{2} \cos ^{2} u+v^{2} \sin ^{2} u=v^{2}
$$

Using the above, we can now evaluate the given surface integral:

$$
\begin{aligned}
\iint_{\tau} \mathrm{GdA} & =\iint_{(0,2 \pi) \times(0,1)}\left(v^{2} \cdot \sqrt{2} v\right) \mathrm{d} u \mathrm{~d} v \\
& =\sqrt{2} \int_{0}^{2 \pi} \mathrm{~d} u \int_{0}^{1} v^{3} \mathrm{~d} v \\
& =\sqrt{2} \cdot 2 \pi \cdot \frac{1}{4} \\
& =\frac{\pi}{\sqrt{2}}
\end{aligned}
$$

(2) (Intro to surface integrals) One can also define an intermediate notion of surface integration of vector fields over parametric surfaces. More specifically:

Definition. Let $\sigma: \mathrm{U} \rightarrow \mathbb{R}^{3}$ be a parametric surface, and let \mathbf{F} be a vector field that
is defined on the image of γ. We then define the surface integral of \mathbf{F} over σ by

$$
\iint_{\sigma} \mathbf{F} \cdot \mathrm{d} \mathbf{A}=\iint_{\mathrm{u}}\left\{\mathbf{F}(\sigma(u, v)) \cdot\left[\partial_{1} \sigma(u, v) \times \partial_{2} \sigma(u, v)\right]_{\sigma(u, v)}\right\} \mathrm{du} d v
$$

(a) Consider the vector field \mathbf{F} on \mathbb{R}^{3} given by

$$
\mathbf{F}(x, y, z)=\left(y, z^{5800} e^{x^{2000}+46 y}{ }^{1523}, x\right)_{(x, y, z)}
$$

and let \mathbf{P} be the parametric plane

$$
\mathbf{P}:(0,1) \times(0,1) \rightarrow \mathbb{R}^{3}, \quad \mathbf{P}(u, v)=(1, u, v)
$$

Compute the surface integral of \mathbf{F} over \mathbf{P}.
(b) Consider the vector field \mathbf{G} on \mathbb{R}^{3} given by

$$
\mathbf{G}(x, y, z)=\left(z, z, x^{2}+y^{2}\right)_{(x, y, z)}
$$

and let τ be the parametric torus

$$
\tau:(0,2 \pi) \times(0,1) \rightarrow \mathbb{R}^{3}, \quad \tau(u, v)=(v \cos u, v \sin u, v)
$$

Compute the surface integral of \mathbf{G} over τ.
(c) Consider the vector field \mathbf{H} on \mathbb{R}^{3} given by

$$
\mathbf{H}(x, y, z)=(-x,-y, z)_{(x, y, z)}
$$

and let \mathbf{q} be the (regular) parametric surface

$$
\mathbf{q}:(0,1) \times(0,1) \rightarrow \mathbb{R}^{3}, \quad \mathbf{q}(u, v)=\left(u, v, u^{2}+v^{2}\right)
$$

Compute the surface integral of \mathbf{H} over \mathbf{q}.
(a) We begin by computing some preliminary quantities:

$$
\begin{aligned}
\partial_{1} \mathbf{P}(u, v) \times \partial_{2} \mathbf{P}(u, v) & =(0,1,0) \times(0,0,1) \\
& =(1,0,0)
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{F}(\mathbf{P}(\mathbf{u}, v)) & =\mathbf{F}(1, u, v) \\
& =\left(u, v^{5800} e^{1+46 u^{1523}}, 1\right)_{\mathbf{P}(u, v)},
\end{aligned}
$$

for any $(u, v) \in(0,1) \times(u, 1)$. The above then implies

$$
\begin{aligned}
\mathbf{F}(\mathbf{P}(u, v)) \cdot\left[\partial_{1} \mathbf{P}(u, v) \times \partial_{2} \mathbf{P}(u, v)\right]_{\mathbf{P}(u, v)} & =\left(u, v^{5800} e^{1+46 u^{1523}}, 1\right) \cdot(1,0,0) \\
& =u .
\end{aligned}
$$

Thus, recalling our definition of parametric surface integral, we obtain

$$
\begin{aligned}
\iint_{\mathbf{P}} \mathbf{F} \cdot \mathrm{d} \mathbf{A} & =\iint_{(0,1) \times(0,1)}\left\{\mathbf{F}(\mathbf{P}(u, v)) \cdot\left[\partial_{1} \mathbf{P}(u, v) \times \partial_{2} \mathbf{P}(u, v)\right]_{\mathbf{P}(u, v)}\right\} d u d v \\
& =\iint_{(0,1) \times(0,1)} u d u d v \\
& =\int_{0}^{1} d v \int_{0}^{1} u d u \\
& =\frac{1}{2}
\end{aligned}
$$

(b) First, we compute, for any $(u, v) \in(0,2 \pi) \times(0,1)$,

$$
\begin{aligned}
\partial_{1} \tau(u, v) \times \partial_{2} \tau(u, v) & =(-v \sin u, v \cos u, 0) \times(\cos u, \sin u, 1) \\
& =(v \cos u, v \sin u,-v) \\
\mathbf{G}(\tau(u, v)) & =\left(v, v, v^{2} \cos ^{2} u+v^{2} \sin ^{2} u\right)_{\tau(u, v)} \\
& =\left(v, v, v^{2}\right)_{\tau(u, v)} .
\end{aligned}
$$

Combining the above, we then obtain

$$
\begin{aligned}
\mathbf{G}(\tau(u, v)) \cdot\left[\partial_{1} \tau(u, v) \times \partial_{2} \tau(u, v)\right]_{\tau(u, v)} & =\left(v, v, v^{2}\right) \cdot(v \cos u, v \sin u,-v) \\
& =v^{2} \cos u+v^{2} \sin u-v^{3} .
\end{aligned}
$$

Thus, by our given definition of surface integrals,

$$
\begin{aligned}
\iint_{\tau} \mathbf{G} \cdot \mathrm{d} \mathbf{A} & =\iint_{(0,2 \pi) \times(0,1)}\left\{\mathbf{G}(\tau(u, v)) \cdot\left[\partial_{1} \tau(u, v) \times \partial_{2} \tau(u, v)\right]_{\tau(u, v)}\right\} d u d v \\
& =\int_{0}^{1} \int_{0}^{2 \pi}\left(v^{2} \cos u+v^{2} \sin u-v^{3}\right) d u d v
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{1}\left(v^{2} \sin u-v^{2} \cos u-v^{3} u\right)_{\mathfrak{u}=0}^{u=2 \pi} d v \\
& =-2 \pi \int_{0}^{1} v^{3} d v \\
& =-\frac{\pi}{2}
\end{aligned}
$$

(c) First, note that for any $(u, v) \times(0,1) \times(0,1)$, we have

$$
\begin{aligned}
\partial_{1} \mathbf{q}(u, v) \times \partial_{2} \mathbf{q}(u, v) & =(1,0,2 u) \times(0,1,2 v) \\
& =(-2 u,-2 v, 1), \\
\mathbf{H}(\mathbf{q}(u, v)) & =\left(-u,-v, u^{2}+v^{2}\right)_{\mathbf{q}(u, v)}, \\
\mathbf{H}(\mathbf{q}(u, v)) \cdot\left[\partial_{1} \mathbf{q}(u, v) \times \partial_{2} \mathbf{q}(u, v)\right]_{\mathbf{q}(u, v)} & =\left(-u,-v, u^{2}+v^{2}\right) \cdot(-2 u,-2 v, 1) \\
& =3 u^{2}+3 v^{2} .
\end{aligned}
$$

Finally, using the above, we can evaluate the desired surface integral:

$$
\begin{aligned}
\iint_{\mathbf{q}} \mathbf{H} \cdot \mathrm{d} \mathbf{A} & =\iint_{(0,1) \times(0,1)}\left\{\mathbf{H}(\mathbf{q}(u, v)) \cdot\left[\partial_{1} \mathbf{q}(u, v) \times \partial_{2} \mathbf{q}(u, v)\right]_{\mathbf{q}(u, v)}\right\} d u d v \\
& =\int_{0}^{1} \int_{0}^{1}\left(3 u^{2}+3 v^{2}\right) d u d v \\
& =2 .
\end{aligned}
$$

(3) (A Survey of Integration) Let S denote the set

$$
S=\left\{\left(u, v, u^{2}-v^{2}\right) \in \mathbb{R}^{3} \mid(u, v) \in(0,1) \times(0,1)\right\} .
$$

(a) Show that S is a surface. In addition, give an injective parametrisation of S whose image is precisely all of S.
(b) Compute the surface integral over S of the real-valued function

$$
F: \mathbb{R}^{3} \rightarrow \mathbb{R}, \quad F(x, y, z)=x y
$$

(The double integral you get from expanding the surface integral is not so pleasant; you will probably have to use the method of substitution twice to compute it.)
(c) Let us also assign to S the upward-facing orientation, i.e. the orientation in the positive
z-direction. Then, compute the surface integral over S of the vector field

$$
\mathbf{G}(x, y, z)=\left(x y^{2}, y x^{2}, 1\right)_{(x, y, z)}, \quad(x, y, z) \in \mathbb{R}^{3}
$$

(a) S is a surface, since it is the graph of the (smooth) function

$$
f:(0,1) \times(0,1) \rightarrow \mathbb{R}, \quad f(u, v)=u^{2}-v^{2}
$$

Furthermore, an injective parametrisation of all of S is given by

$$
\sigma:(0,1) \times(0,1) \rightarrow \mathrm{S}, \quad \sigma(u, v)=\left(u, v, u^{2}-v^{2}\right)
$$

(b) We begin by computing the partial derivatives of σ :

$$
\partial_{1} \sigma(u, v)=(1,0,2 u), \quad \partial_{2} \sigma(u, v)=(0,1,-2 v) .
$$

Taking a cross product of the above yields

$$
\begin{aligned}
\partial_{1} \sigma(u, v) \times \partial_{2} \sigma(u, v) & =(-2 u, 2 v, 1) \\
\left|\partial_{1} \sigma(u, v) \times \partial_{2} \sigma(u, v)\right| & =\sqrt{1+4 u^{2}+4 v^{2}}
\end{aligned}
$$

Now, by part (a), we know that σ is an injective parametrisation of S whose image is all of S. Thus, we can use σ to compute our surface integral:

$$
\iint_{S} F d A=\iint_{\sigma} F d A
$$

To calculate the above, we first note that

$$
\mathrm{F}(\sigma(u, v))=\mathrm{F}\left(u, v, u^{2}-v^{2}\right)=u v .
$$

Thus, our surface integral can now be expanded as

$$
\iint_{S} F d A=\iint_{(0,1) \times(0,1)}\left(u v \sqrt{1+4 u^{2}+4 v^{2}}\right) d u d v
$$

This can now be evaluated using Fubini's theorem and the method of subsitution:

$$
\begin{aligned}
\iint_{S} F d A & =\int_{0}^{1} v\left[\int_{0}^{1} u \sqrt{1+4 u^{2}+4 v^{2}} d u\right] d v \\
& =\int_{0}^{1} v\left[\frac{1}{12}\left(1+4 u^{2}+4 v^{2}\right)^{\frac{3}{2}}\right]_{u=0}^{u=1} d v \\
& =\frac{1}{12} \int_{0}^{1} v\left[\left(5+4 v^{2}\right)^{\frac{3}{2}}-\left(1+4 v^{2}\right)^{\frac{3}{2}}\right] d v \\
& =\frac{1}{12} \cdot \frac{1}{20} \cdot\left[\left(5+4 v^{2}\right)^{\frac{5}{2}}-\left(1+4 v^{2}\right)^{\frac{5}{2}}\right]_{v=0}^{v=1} \\
& =\frac{1}{240}\left(9^{\frac{5}{2}}-5^{\frac{5}{2}}-5^{\frac{5}{2}}+1^{\frac{5}{2}}\right) \\
& =\frac{61}{60}-\frac{5 \sqrt{5}}{24} . \quad(\text { Sorry }(\odot)
\end{aligned}
$$

(Even if you were not able to get the final number, the most important part is that you can correctly expand the surface integral into a double integral.)
(c) First, recall from part (b) that

$$
\partial_{1} \sigma(u, v) \times \partial_{2} \sigma(u, v)=(-2 u, 2 v, 1)
$$

hence it follows that σ generates the upward-facing orientation of S. Consequently, we can use the parametrisation σ to compute our surface integrals:

$$
\iint_{S} \mathbf{G} \cdot \mathrm{~d} \mathbf{A}=+\iint_{u}\left\{\mathbf{G}(\sigma(u, v)) \cdot\left[\partial_{1} \sigma(u, v) \times \partial_{2} \sigma(u, v)\right]_{\sigma(u, v)}\right\} d u d v .
$$

To calculate the above, we observe that

$$
\mathbf{G}(\sigma(u, v))=\left(u v^{2}, v u^{2}, 1\right)_{\sigma(u, v)}
$$

and hence

$$
\mathbf{G}(\sigma(u, v)) \cdot\left[\partial_{1} \sigma(u, v) \times \partial_{2} \sigma(u, v)\right]_{\sigma(u, v)}=\left(u v^{2}, v u^{2}, 1\right) \cdot(-2 u, 2 v, 1)=1 .
$$

Therefore, we conclude that

$$
\iint_{S} \mathbf{G} \cdot \mathrm{~d} \mathbf{A}=\iint_{(0,1) \times(0,1)} 1 \mathrm{~d} u \mathrm{~d} v=1
$$

(4) [Marked] Let C denote the following disconnected surface:

$$
C=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}=1 \cup x^{2}+y^{2}=4,-1<z<1\right\} .
$$

which describes a small cylinder surrounded by a larger cylinder. Moreover, let us orient \mathcal{C} such that the outer cylinder has outward orientation and the inner cylinder is oriented inwards.
(a) Sketch this surface.
(b) Compute the surface integral over C of the function

$$
\mathrm{G}: \mathbb{R}^{3} \rightarrow \mathbb{R}, \quad \mathrm{G}(x, y, z)=-\frac{x^{2} y^{2}}{66}+\frac{z^{2}}{8}
$$

Some useful hints: $2 \sin (x) \cos (x)=\sin (2 x)$ and $\sin ^{2}(x)=\frac{1-\cos (2 x)}{2}$.
(c) Compute the surface integral over C of the vector field \mathbf{H} on \mathbb{R}^{3} given by

$$
\mathbf{H}(x, y, z)=(y, x, z)_{(x, y, z)},
$$

(a) A sketch of this figure is shown here

[1 mark for somewhat correct sketch]
(b) The first step is to parametrise C appropriately. Since this surface is disconnected, we need two parametrizations. The outer cylinder has outward orientation, so for this portion of the surface we will parametrize it as follows:

$$
\sigma_{\text {out }}:(0,2 \pi) \times(-1,1) \rightarrow C, \quad \sigma_{\text {out }}(u, v)=(2 \cos u, 2 \sin u, v) .
$$

For the inner cylinder, we will choose to parametrize such that the parametrization aligns with the orientation of the surface, thus we choose:

$$
\sigma_{\text {in }}:(0,2 \pi) \times(-1,1) \rightarrow C, \quad \sigma_{\text {in }}(u, v)=(\cos u,-\sin u, v) .
$$

Observe $\sigma_{\text {in }} \cup \sigma_{\text {out }}$ is injective, and its image is C up to a pair of lines. [2 marks for correct parametrisation]

For the outer cylinder, we compute

$$
\begin{aligned}
\partial_{1} \sigma_{\text {out }}(u, v) & =(-2 \sin u, 2 \cos u, 0), \\
\partial_{2} \sigma_{\text {out }}(u, v) & =(0,0,1), \\
\partial_{1} \sigma_{\text {out }}(u, v) \times \partial_{2} \sigma_{\text {out }}(u, v) & =(2 \cos u, 2 \sin u, 0), \\
\left|\partial_{1} \sigma_{\text {out }}(u, v) \times \partial_{2} \sigma_{\text {out }}(u, v)\right| & =2 .
\end{aligned}
$$

Note that this parametrisation generates the orientation of C along the outer cylinder.
Similarly, for the inner cylinder we compute:

$$
\begin{aligned}
\partial_{1} \sigma_{\text {in }}(u, v) & =(-\sin u,-\cos u, 0), \\
\partial_{2} \sigma_{\text {in }}(u, v) & =(0,0,1), \\
\partial_{1} \sigma_{\text {in }}(u, v) \times \partial_{2} \sigma_{\text {in }}(u, v) & =(-\cos u, \sin u, 0), \\
\left|\partial_{1} \sigma_{\text {in }}(u, v) \times \partial_{2} \sigma_{\text {in }}(u, v)\right| & =1 .
\end{aligned}
$$

and again this parametrisation points inward along the inner cylinder, as needed. [2 marks for correct calculations up to here][1 mark for correct observation of orientation]

Also we compute

$$
\mathrm{G}\left(\sigma_{\text {out }}(u, v)\right)\left|\partial_{1} \sigma_{\text {out }}(u, v) \times \partial_{2} \sigma_{\text {out }}(u, v)\right|=\frac{v^{2}}{4}-\frac{16}{33} \sin ^{2} u \cos ^{2} u
$$

$$
\begin{aligned}
& =\frac{v^{2}}{4}-\frac{4}{33} \sin ^{2}(2 u) \\
& =\frac{v^{2}}{4}-\frac{2}{33}(1-\cos (4 u))
\end{aligned}
$$

A similar computation yields

$$
\mathrm{G}\left(\sigma_{\text {in }}\right)\left|\partial_{1} \sigma_{\text {in }}(u, v) \times \partial_{2} \sigma_{\text {in }}(u, v)\right|=\frac{v^{2}}{8}-\frac{1}{528}(1-\cos (4 u))
$$

[1 mark for correct evalution]
We can nowcompute the surface integral over C :

$$
\begin{aligned}
& \iint_{C} G d A=\iint_{\sigma_{\text {in }}} G d A+\iint_{\sigma_{\text {out }}} d A \\
& =\iint_{(0,2 \pi) \times(-1,1)}\left[G\left(\sigma_{\text {in }}(u, v)\right)\left|\partial_{1} \sigma_{\text {in }}(u, v) \times \partial_{2} \sigma_{\text {in }}(u, v)\right|+G\left(\sigma_{\text {out }}(u, v)\right)\left|\partial_{1} \sigma_{\text {out }}(u, v) \times \partial_{2} \sigma_{\text {out }}(u, v)\right|\right] d u d v \\
& =\int_{0}^{2 \pi} d u \int_{-1}^{1} d v\left(\frac{3 v^{2}}{8}-\frac{1}{16}+\frac{1}{16} \cos (4 u)\right)
\end{aligned}
$$

[1 mark for almost correct answer up to this point] From here, we directly compute

$$
\begin{aligned}
\iint_{C} G d A & =\int_{0}^{2 \pi}\left(\frac{v^{3}}{8}-\frac{v}{16}+\frac{v}{16} \cos (4 u)\right)_{v=-1}^{v=1} d u \\
& =\int_{0}^{2 \pi}\left(\frac{1}{4}-\frac{1}{8}+\frac{1}{8} \cos (4 u)\right) d u \\
& =\left(\frac{u}{4}-\frac{u}{8}+\frac{1}{32} \sin (4 u)\right)_{u=0}^{u=2 \pi} \\
& =\frac{2 \pi}{4}-\frac{2 \pi}{8}=\frac{\pi}{4} .
\end{aligned}
$$

[1 mark for somewhat correct integral]
(c) We have already done most of the work, as can again use the parametrisation $\sigma_{\text {in }}$ out from (a). Recall that our parametrisations for the inner and outer cylinders are aligned with the orientation of C , therefore we simply need to compute

$$
\mathbf{H}\left(\sigma_{\text {in }}(u, v)\right) \cdot\left[\partial_{1} \sigma_{\text {in }}(u, v) \times \partial_{2} \sigma_{\text {in }}(u, v)\right]=\sin (2 u)
$$

and

$$
\mathbf{H}\left(\sigma_{\text {out }}(u, v)\right) \cdot\left[\partial_{1} \sigma_{\text {out }}(u, v) \times \partial_{2} \sigma_{\text {out }}(u, v)\right]=4 \sin (2 u)
$$

[1 mark for computation]

$$
\begin{aligned}
& \iint_{C} \mathbf{H} \cdot \mathrm{~d} \mathbf{A}= \\
& \iint_{(0,2 \pi) \times(-1,1)}\left\{\mathbf{H}\left(\sigma_{\text {in }}(u, v)\right) \cdot\left[\partial_{1} \sigma_{\text {in }}(u, v) \times \partial_{2} \sigma_{\text {in }}(u, v)\right]_{\left.\sigma_{\text {in }}(u, v)\right\}}\right\} d u d v \\
& +\iint_{(0,2 \pi) \times(-1,1)}\left\{\mathbf{H}\left(\sigma_{\text {out }}(u, v)\right) \cdot\left[\partial_{1} \sigma_{\text {out }}(u, v) \times \partial_{2} \sigma_{\text {out }}(u, v)\right]_{\sigma_{\text {out }}(u, v)}\right\} d u d v .
\end{aligned}
$$

The integral can now be computed directly:

$$
\begin{aligned}
\iint_{C} \mathbf{H} \cdot d \mathbf{A} & =+\iint_{(0,2 \pi) \times(-1,1)} 5 \sin (2 u) d u d v \\
& =\int_{0}^{2 \pi} 10 \sin (2 u) d u d v \\
& =-\left.5 \cos (2 u)\right|_{u=0} ^{u=2 \pi} \\
& =0
\end{aligned}
$$

[1 mark for an almost correct answer]

(5) [Tutorial]

(a) Consider the surface (you may assume this is indeed a surface)

$$
\mathcal{P}=\left\{\left(u, v, u^{4}+v\right) \in \mathbb{R}^{3} \mid(u, v) \in(0,1) \times(-1,1)\right\} .
$$

Compute the surface integral over \mathcal{P} of the following function:

$$
F: \mathbb{R}^{3} \rightarrow \mathbb{R}, \quad F(x, y, z)=6 x^{5}
$$

(b) Consider the sphere,

$$
\mathbb{S}^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}
$$

and let \mathbb{S}^{2} be given the "outward-facing" orientation. Compute the surface integral over \mathbb{S}^{2} of the vector field \mathbf{F} on \mathbb{R}^{3} defined by the formula

$$
\mathbf{F}(x, y, z)=\left(0,0, z^{3}\right)_{(x, y, z)}
$$

(a) The first step is to appropriately parametrise \mathcal{P}. Observe that the map

$$
\sigma:(0,1) \times(-1,1) \rightarrow \mathcal{P}, \quad \sigma(u, v)=\left(u, v, u^{4}+v\right)
$$

is a parametrisation of \mathcal{P}. Moreover, note that σ is injective, and its image is all of \mathcal{P}. As a result, we have, from the definition of surface integrals,

$$
\iint_{\mathcal{P}} \mathrm{Fd} A=\iint_{\sigma} \mathrm{Fd} A=\iint_{(0,1) \times(-1,1)} \mathrm{F}(\sigma(u, v))\left|\partial_{1} \sigma(u, v) \times \partial_{2} \sigma(u, v)\right| d u d v
$$

Next, the partial derivatives of σ satisfy

$$
\partial_{1} \sigma(u, v)=\left(1,0,4 u^{3}\right), \quad \partial_{2} \sigma(u, v)=(0,1,1)
$$

Thus, the required terms in the above integrand satisfy

$$
\begin{aligned}
\left|\partial_{1} \sigma(u, v) \times \partial_{2} \sigma(u, v)\right| & =\left|\left(-4 u^{3},-1,1\right)\right|=\sqrt{2+16 u^{6}}, \\
F(\sigma(u, v)) & =6 u^{5} .
\end{aligned}
$$

Combining all the above, we can now compute the surface integral as

$$
\begin{aligned}
\iint_{\mathcal{P}} F d A & =\int_{-1}^{1} \int_{0}^{1} 6 u^{5} \sqrt{2+16 u^{6}} d u d v \\
& =2 \int_{0}^{1} 6 u^{5} \sqrt{2+16 u^{6}} d u \\
& =2 \cdot \frac{1}{16} \cdot \frac{2}{3} \cdot\left[\left(2+16 u^{6}\right)^{\frac{3}{2}}\right]_{u=0}^{u=1} \\
& =\frac{13 \sqrt{2}}{3} .
\end{aligned}
$$

(b) Recall (from lectures and the lecture notes) that the parametrisation of \mathbb{S}^{2} given by

$$
\rho:(0,2 \pi) \times(0, \pi) \rightarrow \mathbb{S}^{2}, \quad \rho(u, v)=(\cos u \sin v, \sin u \sin v, \cos v)
$$

is injective, and that its image is "almost all" of \mathbb{S}^{2} (the image excludes only two points and a semicircle). Moreover, from the usual computations, we have that

$$
\partial_{1} \rho(u, v) \times \partial_{2} \rho(u, v)=-\sin v \cdot(\cos u \sin v, \sin u \sin v, \cos v)=-\sin v \cdot \rho(u, v)
$$

In particular, the arrows

$$
\left[\partial_{1} \rho(u, v) \times \partial_{2} \rho(u, v)\right]_{\rho(u, v)}=-\sin v \cdot \rho(u, v)_{\rho(u, v)},
$$

which are normal to \mathbb{S}^{2}, point inward from \mathbb{S}^{2}. Thus, ρ generates the orientation opposite to our given orientation of \mathbb{S}^{2}, and hence we have that

$$
\iint_{\mathbb{S}^{2}} \mathbf{F} \cdot \mathrm{~d} \mathbf{A}=-\iint_{(0,2 \pi) \times(0, \pi)}\left\{\mathbf{F}(\rho(u, v)) \cdot\left[\partial_{1} \rho(u, v) \times \partial_{2} \rho(u, v)\right]_{\rho(u, v)}\right\} d u d v
$$

Note the integrand satisfies

$$
\begin{aligned}
\mathbf{F}(\rho(u, v)) \cdot\left[\partial_{1} \rho(u, v) \times \partial_{2} \rho(u, v)\right]_{\rho(u, v)} & =-\sin v\left(0,0, \cos ^{3} v\right) \cdot(\cos u \sin v, \sin u \sin v, \cos v) \\
& =-\sin v \cos ^{4} v .
\end{aligned}
$$

As a result,

$$
\begin{aligned}
\iint_{\mathbb{S}^{2}} \mathbf{F} \cdot \mathrm{~d} \mathbf{A} & =\int_{0}^{2 \pi} \int_{0}^{\pi} \sin v \cos ^{4} v \mathrm{~d} v \mathrm{du} \\
& =2 \pi \cdot \frac{1}{5}\left[-\cos ^{5} v\right]_{v=0}^{v=\pi} \\
& =\frac{4 \pi}{5}
\end{aligned}
$$

(6) (A-levels, revisited)
(a) Show that the surface area of a sphere of radius $\mathrm{r}>0$,

$$
S_{r}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=r^{2}\right\}
$$

is equal to $4 \pi r^{2}$.
(b) Show that the area of the side of a cone with base radius $r>0$ and height $h>0$,

$$
C_{r, h}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid 0<z<h, x^{2}+y^{2}=r^{2}\left(1-\frac{z}{h}\right)^{2}\right\},
$$

is equal to $\pi r \sqrt{r^{2}+h^{2}}$.
(a) Similar to the case of a unit sphere, we see that

$$
\rho_{r}:(0,2 \pi) \times(0, \pi) \rightarrow S_{r}, \quad \rho_{r}(u, v)=(r \cos u \sin v, r \sin u \sin v, r \cos v)
$$

is an injective parametrisation of S_{r}, whose image is all of S_{r} except for two points and a semicircle. Moreover, a direct calculation (analogous to the one for \mathbb{S}^{2}) shows that

$$
\left|\partial_{1} \rho_{r}(u, v) \times \partial_{2} \rho_{r}(u, v)\right|=\left|-r \sin v \cdot \rho_{r}(u, v)\right|=r^{2} \sin v .
$$

As a result, we obtain

$$
\mathcal{A}\left(\mathrm{S}_{\mathrm{r}}\right)=\iint_{(0,2 \pi) \times(0, \pi)} r^{2} \sin v d u d v=r^{2} \int_{0}^{2 \pi} d u \int_{0}^{\pi} \sin v d v=4 \pi r^{2}
$$

(b) The main step is to parametrise $C_{r, h}$ correctly. For this, we can take

$$
\sigma:(0,2 \pi) \times(0, h) \rightarrow C_{r, h}, \quad \sigma(u, v)=\left(r\left(1-v h^{-1}\right) \cos u, r\left(1-v h^{-1}\right) \sin u, v\right) .
$$

In particular, σ is injective, and its image is all of $C_{r, h}$ except for a line. (Plot this out and see for yourself!) Moreover, direct computations yield

$$
\begin{aligned}
\partial_{1} \sigma(u, v) & =\left(-r\left(1-v h^{-1}\right) \sin u, r\left(1-v h^{-1}\right) \cos u, 0\right), \\
\partial_{2} \sigma(u, v) & =\left(-r h^{-1} \cos u,-r h^{-1} \sin u, 1\right), \\
\partial_{1} \sigma(u, v) \times \partial_{2} \sigma(u, v) & =\left(r\left(1-v h^{-1}\right) \cos u, r\left(1-v h^{-1}\right) \sin u, r^{2} h^{-1}\left(1-v h^{-1}\right)\right), \\
\left|\partial_{1} \sigma(u, v) \times \partial_{2} \sigma(u, v)\right| & =r\left(1-\frac{v}{h}\right) \sqrt{1+\left(\frac{r}{h}\right)^{2}} .
\end{aligned}
$$

Combining the above, we conclude that the surface area is

$$
\begin{aligned}
\mathcal{A}\left(C_{r, h}\right) & =r \sqrt{1+\left(\frac{r}{h}\right)^{2}} \iint_{(0,2 \pi) \times(0, h)}\left(1-\frac{v}{h}\right) d u d v \\
& =2 \pi r \sqrt{1+\left(\frac{r}{h}\right)^{2}} \int_{0}^{h}\left(1-\frac{v}{h}\right) d v \\
& =2 \pi r \sqrt{1+\left(\frac{r}{h}\right)^{2}} \cdot \frac{h}{2} \\
& =\pi r \sqrt{r^{2}+h^{2}}
\end{aligned}
$$

(7) (Reversal of orientations) Let $S \subseteq \mathbb{R}^{3}$ be an oriented surface, and let $\sigma: U \rightarrow S$ be a parametrisation of S. Moreover, define the set

$$
\mathrm{U}_{\mathrm{r}}=\{(v, u) \mid(\mathrm{u}, v) \in \mathrm{u}\}
$$

and define the parametric surface

$$
\sigma_{\mathrm{r}}: \mathrm{U}_{\mathrm{r}} \rightarrow \mathbb{R}^{3}, \quad \sigma_{\mathrm{r}}(v, u)=\sigma(u, v)
$$

In other words, σ_{r} is precisely σ but with the roles of u and v reversed.
(a) Show that for any $(u, v) \in U$,

$$
\partial_{1} \sigma_{r}(v, u) \times \partial_{2} \sigma_{r}(v, u)=-\left[\partial_{1} \sigma(u, v) \times \partial_{2} \sigma(u, v)\right] .
$$

(b) Show that σ_{r} is also a parametrisation of S , and that σ_{r} has the same image as σ.
(c) Use the formula from part (a) to conclude that if σ generates an orientation O of S , then σ_{r} generates the orientation opposite to O .
(a) We begin by relating the partial derivatives of σ and σ_{r}-for any $(v, u) \in U_{r}$,

$$
\begin{aligned}
& \partial_{1} \sigma_{r}(v, u)=\partial_{v}\left[\sigma_{r}(v, u)\right]=\partial_{v}[\sigma(u, v)]=\partial_{2} \sigma(u, v), \\
& \partial_{2} \sigma_{r}(v, u)=\partial_{u}\left[\sigma_{r}(v, u)\right]=\partial_{u}[\sigma(u, v)]=\partial_{1} \sigma(u, v) .
\end{aligned}
$$

As a result, using that the cross product is antisymmetric, we conclude that

$$
\begin{aligned}
\partial_{1} \sigma_{r}(v, u) \times \partial_{2} \sigma_{r}(v, u) & =\partial_{2} \sigma(u, v) \times \partial_{1} \sigma(u, v) \\
& =-\left[\partial_{1} \sigma(u, v) \times \partial_{2} \sigma(u, v)\right] .
\end{aligned}
$$

(b) First, suppose \mathbf{p} is in the image of σ, so that $\mathbf{p}=\sigma(u, v)$ for some $(u, v) \in U$. Then, by definition, $(v, u) \in \mathrm{U}_{\mathrm{r}}$ and $\sigma_{\mathrm{r}}(v, u)=\sigma(u, v)=\mathbf{p}$, and it follows that \mathbf{p} is also in the image of σ_{r}. Conversely, if \mathbf{p} is in the image of σ_{r}, then $\mathbf{p}=\sigma_{r}(v, u)$ for some $(v, u) \in U_{r}$. This then implies $(u, v) \in U$ and $\sigma(u, v)=\sigma_{r}(v, u)=\mathbf{p}$, and hence \mathbf{p} is also in the image of σ_{r}. From the above, we conclude that σ and σ_{r} have the same image.

In particular, the above implies that the image of σ_{r} lies within S. Moreover, using the
formula obtained from part (a), we have, for any $(v, u) \in \mathrm{U}_{\mathrm{r}}$,

$$
\left|\partial_{1} \sigma_{r}(v, u) \times \partial_{2} \sigma_{r}(v, u)\right|=\left|\partial_{1} \sigma(u, v) \times \partial_{2} \sigma(u, v)\right| \neq 0,
$$

since σ is regular by assumption. This implies that σ_{r} is also regular.
Combining the above, we conclude that σ_{r} is indeed a parametrisation of S.
(c) For any point $\mathbf{p}=\sigma(u, v)=\sigma_{r}(v, u)$ of S (where $\left.(u, v) \in u\right)$, we have that:

- The orientation generated by σ at \mathbf{p} is given by

$$
\mathbf{n}_{\sigma}(u, v)=+\left[\frac{\partial_{1} \sigma(u, v) \times \partial_{2} \sigma(u, v)}{\left|\partial_{1} \sigma(u, v) \times \partial_{2} \sigma(u, v)\right|}\right]_{\sigma(u, v)} .
$$

- Recalling the result from (a), the orientation selected by σ_{r} at \mathbf{p} is given by

$$
\begin{aligned}
\mathbf{n}_{\sigma_{r}}(v, u) & =+\left[\frac{\partial_{1} \sigma_{r}(v, u) \times \partial_{2} \sigma_{r}(v, u)}{\left|\partial_{1} \sigma_{r}(v, u) \times \partial_{2} \sigma_{r}(v, u)\right|}\right]_{\sigma_{r}(v, u)} \\
& =-\left[\frac{\partial_{1} \sigma(u, v) \times \partial_{2} \sigma(u, v)}{\left|\partial_{1} \sigma(u, v) \times \partial_{2} \sigma(u, v)\right|}\right]_{\sigma(u, v)} \\
& =-\mathbf{n}_{\sigma}(u, v) .
\end{aligned}
$$

In particular, the above shows that σ_{r} generates the opposite unit normals as σ, and hence σ_{r} generates the orientation opposite to that of σ.
(8) (The paradox of Gabriel's horn) Consider the surface of revolution

$$
\mathrm{G}=\left\{(x, y, z) \in \mathbb{R}^{3} \left\lvert\, y^{2}+z^{2}=\frac{1}{x^{2}}\right., x>1\right\}
$$

which is sometimes nicknamed Gabriel's horn. (Before proceeding, you should search for "Gabriel's horn" on Google Images to see an illustration of G.)
(a) Show that G has infinite surface area.
(b) Show that the interior of G,

$$
\mathrm{I}=\left\{(x, y, z) \in \mathbb{R}^{3} \left\lvert\, y^{2}+z^{2} \leq \frac{1}{x^{2}}\right., x>1\right\}
$$

has finite volume.

In other words, you can fill up the inside of the "horn" with a finite amount of paint, but you cannot paint the "horn" itself using a finite amount of paint!
(a) To compute the surface area, we first parametrise G appropriately:

$$
\sigma:(1, \infty) \times(0,2 \pi) \rightarrow G, \quad \sigma(u, v)=\left(u, u^{-1} \cos v, u^{-1} \sin v\right)
$$

Note in particular that σ is injective, and its image is all of G except for a curve. (The reasoning here is analogous to that for Question (4).)

Next, we do some computations involving σ :

$$
\begin{aligned}
\partial_{1} \sigma(u, v) & =\left(1,-u^{-2} \cos v,-u^{-2} \sin v\right) \\
\partial_{2} \sigma(u, v) & =\left(0,-u^{-1} \sin v, u^{-1} \cos v\right), \\
\partial_{1} \sigma(u, v) \times \partial_{2} \sigma(u, v) & =\left(-u^{-3},-u^{-1} \cos v,-u^{-1} \sin v\right), \\
\left|\partial_{1} \sigma(u, v) \times \partial_{2} \sigma(u, v)\right| & =u^{-1} \sqrt{1+u^{-4}},
\end{aligned}
$$

Combining the above with the definition of surface area, we conclude that

$$
\begin{aligned}
A(G) & =\iint_{(1, \infty) \times(0,2 \pi)}\left|\partial_{1} \sigma(u, v) \times \partial_{2} \sigma(u, v)\right| d u d v \\
& =\int_{0}^{2 \pi} d v \int_{1}^{\infty} \frac{1}{u} \sqrt{1+\frac{1}{u^{4}}} d u
\end{aligned}
$$

Since $1+u^{-4} \geq 1$ for all $u \in \mathbb{R}$, it follows that

$$
A(\mathrm{G}) \geq 2 \pi \int_{1}^{\infty} \frac{1}{\mathrm{u}} \mathrm{du}=\lim _{\mathrm{u} / \infty} \ln u-\ln 1=+\infty
$$

Thus, we conclude that $\mathcal{A}(\mathrm{G})$ is indeed infinite.
(b) Recall the volume of I is

$$
\mathrm{V}(\mathrm{I})=\iiint_{\mathrm{I}} 1 \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z
$$

The easiest way to describe I in a way that is convenient for integration is to do a change of variables and write y and z in terms of polar coordinates:

$$
x=x, \quad y=r \cos \theta, \quad z=r \sin \theta
$$

In particular, I can be described in these new coordinates as

$$
I=\left\{(x, r, \theta) \in \mathbb{R}^{3} \mid x>1,0 \leq r \leq x^{-1}, 0 \leq \theta \leq 2 \pi\right\} .
$$

Note that the Jacobian with respect to this change of variables is

$$
J=\operatorname{det} \frac{\partial(x, y, z)}{\partial(x, r, \theta)}=\operatorname{det}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -r \sin \theta \\
0 & \sin \theta & r \cos \theta
\end{array}\right]=r .
$$

Thus, by the change of variables formula and Fubini's theorem, we have that

$$
\begin{aligned}
\mathrm{V}(\mathrm{I}) & =\int_{0}^{2 \pi} \int_{1}^{\infty} \int_{0}^{x^{-1}} \mathrm{~J} d r d x d \theta \\
& =\int_{0}^{2 \pi} d \theta \int_{1}^{\infty} \int_{0}^{x^{-1}} r d r d x \\
& =2 \pi \cdot \frac{1}{2} \int_{1}^{\infty} \frac{1}{x^{2}} d x \\
& =\pi
\end{aligned}
$$

Thus, the volume of I is indeed finite.

