MTH5113 (2023/24): Problem Sheet 7
 Solutions

(1) (Warm-up) For each of the parametric surfaces σ given below and every pair of parameters (u, v) in the domain of σ, compute the following:
(i) $\partial_{1} \sigma(u, v)$ and $\partial_{2} \sigma(u, v)$.
(ii) $\partial_{1} \sigma(u, v) \times \partial_{2} \sigma(u, v)$.
(iii) $\left|\partial_{1} \sigma(u, v) \times \partial_{2} \sigma(u, v)\right|$.
(a) Sphere: $\sigma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$, where $\sigma(u, v)=(\cos u \sin v, \sin u \sin v, \cos v)$.
(b) Torus: $\sigma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$, where $\sigma(u, v)=((2+\cos u) \cos v,(2+\cos u) \sin v, \sin u)$.
(a) (i) Taking partial derivatives of σ yields

$$
\begin{aligned}
& \partial_{1} \sigma(u, v)=(-\sin u \sin v, \cos u \sin v, 0) \\
& \partial_{2} \sigma(u, v)=(\cos u \cos v, \sin u \cos v,-\sin v)
\end{aligned}
$$

(ii) Taking a cross product of the vectors from (i) yields

$$
\begin{aligned}
\partial_{1} \sigma(u, v) \times \partial_{2} \sigma(u, v) & =\left(-\cos u \sin ^{2} v-0,0-\sin u \sin ^{2} v,-\left(\sin ^{2} u+\cos ^{2} u\right) \sin v \cos v\right) \\
& =-\sin v \cdot(\cos u \sin v, \sin u \sin v, \cos v)
\end{aligned}
$$

(iii) Taking the norm of the result from (ii) yields

$$
\begin{aligned}
\left|\partial_{1} \sigma(u, v) \times \partial_{2} \sigma(u, v)\right| & =|\sin v| \sqrt{\cos ^{2} u \sin ^{2} v+\sin ^{2} u \sin ^{2} v+\cos ^{2} v} \\
& =|\sin v| \sqrt{\sin ^{2} v+\cos ^{2} v} \\
& =|\sin v|
\end{aligned}
$$

(b) (i) Taking partial derivatives of σ yields

$$
\partial_{1} \sigma(u, v)=(-\sin u \cos v,-\sin u \sin v, \cos u)
$$

$$
\partial_{2} \sigma(u, v)=(-(2+\cos u) \sin v,(2+\cos u) \cos v, 0)
$$

(ii) Taking a cross product of the vectors from (i) yields

$$
\begin{aligned}
\partial_{1} \sigma(u, v) \times \partial_{2} \sigma(u, v) & =-(2+\cos u) \cdot\left(\cos u \cos v, \cos u \sin v, \sin u\left(\cos ^{2} v+\sin ^{2} v\right)\right) \\
& =-(2+\cos u) \cdot(\cos u \cos v, \cos u \sin v, \sin u) .
\end{aligned}
$$

(iii) Taking the norm of the result from (ii) yields

$$
\begin{aligned}
\left|\partial_{1} \sigma(u, v) \times \partial_{2} \sigma(u, v)\right| & =|2+\cos u| \sqrt{\cos ^{2} u \cos ^{2} v+\cos ^{2} u \sin ^{2} v+\sin ^{2} v} \\
& =2+\cos u .
\end{aligned}
$$

(2) (Warm-up) Determine whether the following parametric surfaces are regular:
(a) Paraboloid:

$$
\sigma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, \quad \sigma(u, v)=\left(u, v, u^{2}+v^{2}\right) .
$$

(b) (Polar) $x y$-plane:

$$
\mathbf{P}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, \quad \mathbf{P}(u, v)=(u \cos v, u \sin v, 0)
$$

(c) One-sheeted hyperboloid:

$$
\mathbf{H}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, \quad \mathbf{H}(u, v)=(\cos u \cosh v, \sin u \cosh v, \sinh v)
$$

(a) We begin by computing the partial derivatives of σ for any $(u, v) \in \mathbb{R}^{2}$:

$$
\partial_{1} \sigma(u, v)=(1,0,2 u), \quad \partial_{2} \sigma(u, v)=(0,1,2 v) .
$$

Taking the cross product of the above yields, for any $(u, v) \in \mathbb{R}^{2}$, that

$$
\begin{aligned}
\partial_{1} \sigma(u, v) \times \partial_{2} \sigma(u, v) & =(-2 u,-2 v, 1) \\
\left|\partial_{1} \sigma(u, v) \times \partial_{2} \sigma(u, v)\right| & =\sqrt{4 u^{2}+4 v^{2}+1} \geq \sqrt{1} \neq 0
\end{aligned}
$$

Thus, it follows that σ is regular.
(b) Taking partial derivatives yields, for any $(u, v) \in \mathbb{R}^{2}$, that

$$
\partial_{1} \mathbf{P}(u, v)=(\cos v, \sin v, 0), \quad \partial_{2} \mathbf{P}(u, v)=(-u \sin v, u \cos v, 0)
$$

Taking the cross product, we then obtain

$$
\begin{aligned}
\partial_{1} \mathbf{P}(u, v) \times \partial_{2} \mathbf{P}(u, v) & =\left(0,0, u \cos ^{2} v+u \sin ^{2} v\right)=(0,0, u) \\
\left|\partial_{1} \mathbf{P}(u, v) \times \partial_{2} \mathbf{P}(u, v)\right| & =|u|
\end{aligned}
$$

In particular, the above vanishes whenever $\boldsymbol{u}=0$, hence \mathbf{P} is not regular.
(c) Taking partial derivatives yields, we obtain

$$
\begin{aligned}
& \partial_{1} \mathbf{H}(u, v)=(-\sin u \cosh v, \cos u \cosh v, 0) \\
& \partial_{2} \mathbf{H}(u, v)=(\cos u \sinh v, \sin u \sinh v, \cosh v)
\end{aligned}
$$

for any $(u, v) \in \mathbb{R}^{2}$. Taking the cross product yields

$$
\partial_{1} \mathbf{H}(u, v) \times \partial_{2} \mathbf{H}(u, v)=\cosh v \cdot(\cos u \cosh v, \sin u \cosh v,-\sinh v) .
$$

Taking the norm of the above, we see that

$$
\begin{aligned}
\left|\partial_{1} \mathbf{H}(u, v) \times \partial_{2} \mathbf{H}(u, v)\right| & =\cosh v \sqrt{\cos ^{2} u \cosh ^{2} v+\sin ^{2} u \cosh ^{2} v+\sinh ^{2} v} \\
& =\cosh v \sqrt{\cosh ^{2} v+\sinh ^{2} v} \\
& =\cosh v \sqrt{1+2 \sinh ^{2} v}
\end{aligned}
$$

where we recalled the identity $\cosh ^{2} v-\sinh ^{2} v=1$ in the last step. Finally, using that $\cosh v>0$ and $\sinh ^{2} v \geq 0$ for all $v \in \mathbb{R}$, we conclude that

$$
\left|\partial_{1} \mathbf{H}(u, v) \times \partial_{2} \mathbf{H}(u, v)\right| \geq \cosh v>0
$$

for any $(u, v) \in \mathbb{R}^{2}$. As a result, \mathbf{H} is regular.
(3) (Parametrise me!) For each surface S and point $\mathbf{p} \in S$ below, give a parametrisation σ of S such that \mathbf{p} lies in the image of σ.
(a) Plane:

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid y=z\right\}, \quad \mathbf{p}=(1,-4,-4)
$$

(b) Ellipsoid:

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+4 y^{2}+4 z^{2}=4\right\}, \quad \mathbf{p}=(2,0,0)
$$

(c) Gabriel's Horn:

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x>0, y^{2}+z^{2}=\frac{1}{x^{2}}\right\}, \quad \mathbf{p}=\left(1, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)
$$

(a) One way to parametrise S is to set u to be x and v to be either y or z; the defining equation $y=z$ then implies both y and z are set to v. This leads to the parametrisation

$$
\sigma: \mathbb{R}^{2} \rightarrow S, \quad \sigma(u, v)=(u, v, v)
$$

One can show that σ is regular (you do not need to show this here). Moreover, σ is injective, and its image covers all of S - note that $(1,-4,-4)=\sigma(1,-4)$.
(b) The most straightforward method to set two of x, y, z to be u and v and to set the remaining component via the defining equation of S. How we make this choice is dictated by the requirement that $(2,0,0)$ is in the image of our parametrisation.

For example, one correct answer is to set

$$
y=u, \quad z=v, \quad x=\sqrt{4-4 y^{2}-4 z^{2}}=2 \sqrt{1-u^{2}-v^{2}}
$$

This leads to the parametrisation,

$$
\sigma: B \rightarrow S, \quad \sigma(u, v)=\left(2 \sqrt{1-u^{2}-v^{2}}, u, v\right)
$$

where $B=\left\{(u, v) \in \mathbb{R}^{2} \mid u^{2}+v^{2}<1\right\}$ is the unit disk about the origin. In particular, one can show that σ is regular, and that $(2,0,0)=\sigma(0,0)$.

An alternative method is to rescale the usual spherical coordinate parametrisation of \mathbb{S}^{2} (in the same way we rescaled the parametrisation of a circle to describe an ellipse). You can try it yourself-this process leads to the following parametrisation:

$$
\sigma: \mathbb{R} \times(0, \pi) \rightarrow S, \quad \sigma(u, v)=(2 \cos u \sin v, \sin u \sin v, \cos v)
$$

Moreover, note that for this σ, we have $(2,0,0)=\sigma\left(0, \frac{\pi}{2}\right)$.
(c) One natural way to parametrise is to observe that at each $x>0$, the points of S at that x-coordinate - which satisfy $y^{2}+z^{2}=x^{-2}$-is a circle in the $y z$-plane (about the origin) of radius $\frac{1}{\chi}$. As a result, we can take $\boldsymbol{x}=\boldsymbol{u}$, and we can take v to be the polar coordinate of the circles (of radius $\frac{1}{\mathrm{u}}$). This yields the following parametrisation:

$$
\sigma:(0, \infty) \times \mathbb{R} \rightarrow S, \quad\left(u, \frac{1}{u} \cos v, \frac{1}{u} \sin v\right) .
$$

Note in particular that $\mathbf{p}=\sigma\left(1, \frac{\pi}{2}\right)$.

Another method is to take $x=u$ and $y=v$. Then, the defining equation for S implies

$$
z^{2}=\frac{1}{u^{2}}-v^{2}, \quad z= \pm \sqrt{\frac{1}{u^{2}}-v^{2}}
$$

Since we want our parametrisation to pass through \mathbf{p}, which has a positive \boldsymbol{z}-coordinate, we must choose the " + " sign in the above.

In addition, the above square root is only well defined when

$$
\frac{1}{u^{2}}-v^{2}>0, \quad v^{2}<\frac{1}{u^{2}},
$$

that is, when (u, v) lies in the (open, connected) region

$$
K=\left\{(u, v) \in \mathbb{R}^{2} \mid u>0, v^{2}<\frac{1}{u^{2}}\right\} .
$$

As a result, another possible parametrisation of S is

$$
\tau: K \rightarrow S, \quad \sigma(u, v)=\left(u, v,+\sqrt{\frac{1}{u^{2}}-v^{2}}\right)
$$

Moreover, note that $\mathbf{p}=\tau\left(1,2^{-\frac{1}{2}}\right)$.
(4) [Marked] Consider the following set:

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid\left(3+y^{2}\right)\left(x^{2}+z^{2}\right)=1\right\} .
$$

(a) Show that S is a surface.
(b) Sketch S.
(c) Give a parametrisation of S such that $\left(-\frac{1}{2 \sqrt{2}}, 1, \frac{1}{2 \sqrt{2}}\right)$ lies in the image of S.
(d) Compute the tangent plane to S at $\left(-\frac{1}{2 \sqrt{2}}, 1, \frac{1}{2 \sqrt{2}}\right)$.
(a) Notice that S can be written as a level set,

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid h(x, y, z)=1\right\}
$$

where h is the function

$$
h: \mathbb{R}^{3} \rightarrow \mathbb{R}, \quad h(x, y, z)=\left(3+y^{2}\right)\left(x^{2}+y^{2}\right)
$$

The gradient of h then satisfies

$$
\nabla h(x, y, z)=\left(2 x\left(3+y^{2}\right), 2 y\left(x^{2}+z^{2}\right), 2 z\left(3+y^{2}\right)\right)_{(x, y, z)}
$$

Thus, $\nabla \mathrm{h}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ vanishes if and only if

$$
x\left(3+y^{2}\right)=0, \quad y\left(x^{2}+z^{2}\right)=0, \quad z\left(3+y^{2}\right)=0 .
$$

In particular, $\nabla \boldsymbol{h}(x, y, z)$ vanishes if and only if $x=z=0$ (while y is allowed to take any value). [1 mark for mostly correct reasoning to this point]

Since for any point $(0, y, 0)$ at which ∇h vanishes, we have

$$
h(0, y, 0)=0 \neq 1
$$

it hence follows that $\nabla \boldsymbol{h}(x, y, z)$ does not vanish at any $(x, y, z) \in S$. Consequently, the level theorem implies S is indeed a surface. [1 mark for mostly correct reasoning]
(b) A drawing of S is given here:

[2 marks for mostly correct drawing]
(c) The easiest way to parametrise S is to set $y=v$ and $x=\frac{\cos u}{\sqrt{3+v^{2}}} z=\frac{\sin u}{\sqrt{3+v^{2}}}$.

As a result, our parametrisation will be given by the formula

$$
\sigma(u, v)=\left(\frac{\cos u}{\sqrt{3+v^{2}}}, v, \frac{\sin u}{\sqrt{3+v^{2}}}\right) .
$$

It remains to determine a viable domain. If we wish to be injective, we must pick $0<u<2 \pi$, whereas v is unrestricted. This maps onto all of S minus a line. We can instead choose a non-injective map which covers the whole surface. Both are fine.

Combining the above yields the parametrisation

$$
\sigma:\left\{(u, v) \in \mathbb{R}^{2}\right\} \rightarrow \mathrm{S}, \quad \sigma(u, v)=\left(\frac{\cos u}{\sqrt{3+v^{2}}}, v, \frac{\sin u}{\sqrt{3+v^{2}}}\right) .
$$

We can now verify that $\left(-\frac{1}{2 \sqrt{2}}, 1, \frac{1}{2 \sqrt{2}}\right)=\sigma\left(\frac{3 \pi}{4}, 1\right)$.
[1 mark for correct parametrisation] [1 mark for correct domain]
(c) We use the parametrisation σ from part (b). First, note that

$$
\partial_{1} \sigma(u, v)=\left(\frac{-\sin u}{\sqrt{3+v^{2}}}, 0, \frac{\cos u}{\sqrt{3+v^{2}}}\right), \quad \partial_{2} \sigma(u, v)=\left(\frac{-v \cos u}{\left(3+v^{2}\right)^{3 / 2}}, 1, \frac{-v \sin u}{\left(3+v^{2}\right)^{3 / 2}}\right) .
$$

Since $\left(-\frac{1}{2 \sqrt{2}}, 1, \frac{1}{2 \sqrt{2}}\right)=\sigma\left(\frac{3 \pi}{4}, 1\right)$, we must evaluate the above at $(u, v)=\left(\frac{3 \pi}{4}, 1\right)$:

$$
\partial_{1} \sigma\left(\frac{3 \pi}{4}, 1\right)=\left(-\frac{1}{2 \sqrt{2}}, 0,-\frac{1}{2 \sqrt{2}}\right), \quad \partial_{2} \sigma\left(\frac{3 \pi}{4}, 1\right)=\left(\frac{1}{8 \sqrt{2}}, 1,-\frac{1}{8 \sqrt{2}}\right) .
$$

Therefore, by definition, the tangent plane to S at $\left(-\frac{1}{2 \sqrt{2}}, 1, \frac{1}{2 \sqrt{2}}\right)$ is

$$
\begin{aligned}
& T_{\left(-\frac{1}{2 \sqrt{2}}, 1, \frac{1}{2 \sqrt{2}}\right)} S=T_{\sigma}\left(\frac{3 \pi}{4}, 1\right)= \\
& \quad\left\{\left.a \cdot\left(-\frac{1}{2 \sqrt{2}}, 0,-\frac{1}{2 \sqrt{2}}\right)_{\left(-\frac{1}{2 \sqrt{2}}, 1, \frac{1}{2 \sqrt{2}}\right)}+b \cdot\left(\frac{1}{8 \sqrt{2}}, 1,-\frac{1}{8 \sqrt{2}}\right)\left(-\frac{1}{2 \sqrt{2}},, \frac{1}{2 \sqrt{2}}\right) \right\rvert\, a, b \in \mathbb{R}\right\} .
\end{aligned}
$$

[1 mark for almost correct answer]
(5) [Tutorial] Consider the two-sheeted hyperboloid:

$$
\mathcal{H}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}-z^{2}=-1\right\} .
$$

(a) Show that \mathcal{H} is a surface.
(b) Give a sketch of \mathcal{H}.
(c) Give a parametrisation of \mathcal{H} that passes through the point $(1,-1, \sqrt{3})$.
(d) Compute the tangent plane to \mathcal{H} at the point $(1,-1, \sqrt{3})$.
(a) First, note that \mathcal{H} can be written as a level set,

$$
\mathcal{H}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid h(x, y, z)=-1\right\}
$$

where $h: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is the function given by

$$
h(x, y, z)=x^{2}+y^{2}-z^{2}
$$

Note that the gradient of h satisfies

$$
\nabla h(x, y, z)=(2 x, 2 y,-2 z)_{(x, y, z)}
$$

which vanishes only when $(x, y, z)=(0,0,0)$.

Since $(0,0,0) \notin \mathcal{H}$ (which follows since $h(0,0,0)=0 \neq-1)$, the level set theorem (see the lectures or the lecture notes) implies that the set \mathcal{H} is indeed a surface.
(b) A sketch of \mathcal{H} is provided below:

(c) Here, the most straightforward approach is to set our parameters u and v to be x and y, respectively. Then, the defining equation for \mathcal{H} implies that $z^{2}=1+u^{2}+v^{2}$, hence

$$
z= \pm \sqrt{1+u^{2}+v^{2}} .
$$

Since we want the point $(1,-1, \sqrt{3})$ (which has positive z-value) to be in our parametrisation, we choose the "+" branch for z. This leads us to the following parametrisation of \mathcal{H} :

$$
\sigma: \mathbb{R}^{2} \rightarrow \mathcal{H}, \quad \sigma(u, v)=\left(u, v, \sqrt{1+u^{2}+v^{2}}\right)
$$

(Observe in particular that $(1,-1, \sqrt{3})=\sigma(1,-1)$.)

For those of you who are sufficiently comfortable with the hyperbolic functions, you could
also see that another correct parametrisation of \mathcal{H} is given by

$$
\tau: \mathbb{R}^{2} \rightarrow \mathcal{H}, \quad \tau(u, v)=(\cos u \sinh v, \sin u \sinh v, \cosh v) .
$$

(d) We compute the tangent plane using the parametrisation σ from (c). First, we have

$$
\begin{array}{cl}
\partial_{1} \sigma(u, v)=\left(1,0, \frac{u}{\sqrt{1+u^{2}+v^{2}}}\right), & \partial_{2} \sigma(u, v)=\left(0,1, \frac{v}{\sqrt{1+u^{2}+v^{2}}}\right), \\
\partial_{1} \sigma(1,-1)=\left(1,0, \frac{1}{\sqrt{3}}\right), & \partial_{2} \sigma(1,-1)=\left(0,1,-\frac{1}{\sqrt{3}}\right),
\end{array}
$$

As a result, we conclude that

$$
\begin{aligned}
\mathrm{T}_{(1,-1, \sqrt{3})} \mathcal{H} & =\mathrm{T}_{\sigma}(1,-1) \\
& =\left\{\left.a \cdot\left(1,0, \frac{1}{\sqrt{3}}\right)_{(1,-1, \sqrt{3})}+\mathrm{b} \cdot\left(0,1,-\frac{1}{\sqrt{3}}\right)_{(1,-1, \sqrt{3})} \right\rvert\, a, b \in \mathbb{R}\right\} .
\end{aligned}
$$

(6) (Let's be self-sufficient) For each of the following surfaces S and points $\mathbf{p} \in S$:
(i) Show that S is a surface.
(ii) Compute the tangent plane to S at \mathbf{p}.
(Unlike in Questions (4) and (5), you are not given a parametrisation of S. You will have to find your own in order to compute the tangent plane.)
(a) Hyperbolic paraboloid:

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x=y z\right\}, \quad \mathbf{p}=(-6,2,-3)
$$

(b) Cylinder:

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+z^{2}=9\right\}, \quad \mathbf{p}=\left(-\frac{3}{\sqrt{2}}, 7, \frac{3}{\sqrt{2}}\right)
$$

(a) (i) Note S can be written as a level set,

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid h(x, y, z)=0\right\}
$$

where h is the function

$$
h: \mathbb{R}^{3} \rightarrow \mathbb{R}, \quad h(x, y, z)=x-y z
$$

Moreover, the gradient of h satisfies

$$
\nabla h(x, y, z)=(1,-z,-y)_{(x, y, z)}, \quad(x, y, z) \in \mathbb{R}^{3}
$$

which never vanishes. Thus, S is a surface by the level set theorem.
(ii) S is most easily parametrised by taking $y=u$ and $z=v$:

$$
\sigma: \mathbb{R}^{2} \rightarrow S, \quad \sigma(u, v)=(u v, u, v) .
$$

Note in particular that $(-6,2,-3)=\sigma(2,-3)$.

To compute the tangent plane, we first calculate

$$
\begin{array}{cl}
\partial_{1} \sigma(u, v)=(v, 1,0), & \partial_{2} \sigma(u, v)=(u, 0,1) \\
\partial_{1} \sigma(2,-3)=(-3,1,0), & \partial_{2} \sigma(2,-3)=(2,0,1)
\end{array}
$$

Thus, by the definition of the tangent plane, we conclude that

$$
T_{(-6,2,-3)} S=T_{\sigma}(2,-3)=\left\{a \cdot(-3,1,0)_{(-6,2,-3)}+b \cdot(2,0,1)_{(-6,2,-3)} \mid a, b \in \mathbb{R}\right\} .
$$

(b) (i) First, observe that S can be written as a level set,

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid g(x, y, z)=9\right\},
$$

where g is the function

$$
g: \mathbb{R}^{3} \rightarrow \mathbb{R}, \quad g(x, y, z)=x^{2}+z^{2} .
$$

The gradient of g satisfies

$$
\nabla \mathrm{g}(x, y, z)=(2 x, 0,2 z)_{(x, y, z)}, \quad(x, y, z) \in \mathbb{R}^{3}
$$

which vanishes only when $x=z=0$.

However, any point $(x, y, z) \in \mathbb{R}^{3}$ satisfying $x=z=0$ cannot lie on S, since

$$
x^{2}+z^{2}=0 \neq 9
$$

Thus, $\nabla \mathrm{g}(\mathbf{p})$ does not vanish for any $\mathbf{p} \in S$, and it follows that S is a surface.
(ii) We can parametrise S using the unusual cylindrical coordinates (note, however, that the cylinder now has radius 3 and is centred about the y-axis):

$$
\sigma: \mathbb{R}^{2} \rightarrow S, \quad \sigma(u, v)=(3 \cos u, v, 3 \sin u)
$$

Note in particular that $\mathbf{p}=\sigma\left(\frac{3 \pi}{4}, 7\right)$.
Taking derivatives of σ then yields

$$
\begin{array}{cl}
\partial_{1} \sigma(u, v)=(-3 \sin u, 0,3 \cos u), & \partial_{2} \sigma(u, v)=(0,1,0), \\
\partial_{1} \sigma\left(\frac{3 \pi}{4}, 7\right)=\left(-\frac{3}{\sqrt{2}}, 0,-\frac{3}{\sqrt{2}}\right), & \partial_{2} \sigma\left(\frac{3 \pi}{4}, 7\right)=(0,1,0) .
\end{array}
$$

As a result, we conclude that

$$
\begin{aligned}
\mathrm{T}_{\left(-\frac{3}{\sqrt{2}}, 7, \frac{3}{\sqrt{2}}\right)} \mathrm{S} & =\mathrm{T}_{\sigma}\left(\frac{3 \pi}{4}, 7\right) \\
& =\left\{\left.\mathrm{a} \cdot\left(-\frac{3}{\sqrt{2}}, 0,-\frac{3}{\sqrt{2}}\right)_{\left(-\frac{3}{\sqrt{2}}, 7, \frac{3}{\sqrt{2}}\right)}+\mathrm{b} \cdot(0,1,0)_{\left(-\frac{3}{\sqrt{2}}, 7, \frac{3}{\sqrt{2}}\right)} \right\rvert\, \mathrm{a}, \mathrm{~b} \in \mathbb{R}\right\} .
\end{aligned}
$$

(7) (Surfaces of revolution) Let $\mathrm{f}:(\mathrm{a}, \mathrm{b}) \rightarrow \mathbb{R}$ be a smooth function satisfying $f(\mathrm{x})>0$ for every $x \in(a, b)$. From f, we can then define the set

$$
\mathcal{R}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid a<x<b, y^{2}+z^{2}=[f(x)]^{2}\right\}
$$

In particular, \mathcal{R} is the surface of revolution obtained by taking the graph of f (in the xy plane) and rotating it (in 3-dimensional space) around the x-axis.
(a) Show that \mathcal{R} is indeed a surface.
(b) Give a parametrisation of \mathcal{R} whose image is all of \mathcal{R}.
(c) Compute the tangent plane to \mathcal{R} at the point $(x, 0, f(x))$, for any $x \in(a, b)$.
(a) Notice that \mathcal{R} can be written as a level set,

$$
\mathcal{R}=\left\{(x, y, z) \in(a, b) \times \mathbb{R}^{2} \mid k(x, y, z)=0\right\}
$$

where k is the (smooth) function

$$
k:(\mathrm{a}, \mathrm{~b}) \times \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad k(x, y, z)=y^{2}+z^{2}-[f(x)]^{2} .
$$

Moreover, its gradient satisfies,

$$
\nabla k(x, y, z)=\left(-2 f(x) f^{\prime}(x), 2 y, 2 z\right)_{(x, y, z)}, \quad(x, y, z) \in(a, b) \times \mathbb{R}^{2}
$$

Note $\nabla k(x, y, z)$ could only possibly vanish when $y=z=0$. But, such a point cannot be on \mathcal{R}, since $y^{2}+z^{2}=0<[f(x)]^{2}$. Thus, by the level set theorem, \mathcal{R} must be a surface.
(b) One straightforward parametrisation is the following:

$$
\sigma:(\mathrm{a}, \mathrm{~b}) \times \mathbb{R} \rightarrow \mathcal{R}, \quad \sigma(u, v)=(u, f(u) \cos v, f(u) \sin v) .
$$

(Intuitively, at each x-value u, the points of \mathcal{R} form a circle in the $y z$-plane of radius $f(u)$.)
(c) First, note that for any $x \in(a, b)$, we have that

$$
(x, 0, f(x))=\sigma\left(x, \frac{\pi}{2}\right)
$$

Furthermore, we directly compute

$$
\begin{aligned}
\partial_{1} \sigma(u, v)= & \left(1, f^{\prime}(u) \cos v, f^{\prime}(u) \sin v\right), & & \partial_{2} \sigma(u, v)=(0,-f(u) \sin v, f(u) \cos v), \\
& \partial_{1} \sigma\left(x, \frac{\pi}{2}\right)=\left(1,0, f^{\prime}(x)\right), & & \partial_{2} \sigma\left(x, \frac{\pi}{2}\right)=(0,-f(x), 0) .
\end{aligned}
$$

As a result, the tangent plane to \mathcal{R} at $(x, 0, f(x))$ is

$$
\begin{aligned}
T_{(x, 0, f(x))} \mathcal{R} & =T_{\sigma}\left(x, \frac{\pi}{2}\right) \\
& =\left\{a \cdot\left(1,0, f^{\prime}(x)\right)_{(x, 0, f(x))}+b \cdot(0,-f(x), 0)_{(x, 0, f(x))} \mid a, b \in \mathbb{R}\right\} \\
& =\left\{a \cdot\left(1,0, f^{\prime}(x)\right)_{(x, 0, f(x))}+b \cdot(0,1,0)_{(x, 0, f(x))} \mid a, b \in \mathbb{R}\right\} .
\end{aligned}
$$

(8) (Fun with stereographic projections) Consider the parametric surface

$$
\sigma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, \quad \sigma(u, v)=\mathbf{p}
$$

where \mathbf{p} is the (unique) point of $\mathbb{S}^{2} \backslash\{(0,0,1)\}$ that lies on the line through the points $(u, v, 0)$ and $(0,0,1)$. (The function σ is called the inverse stereographic projection.)
(a) Show that σ can be described by the formula

$$
\sigma(u, v)=\left(\frac{2 u}{1+u^{2}+v^{2}}, \frac{2 v}{1+u^{2}+v^{2}}, \frac{-1+u^{2}+v^{2}}{1+u^{2}+v^{2}}\right), \quad(u, v) \in \mathbb{R}^{2}
$$

(b) Show that σ is both injective and regular.
(c) Show that the image of σ is precisely $\mathbb{S}^{2} \backslash\{(0,0,1)\}$.
(d) Use your knowledge of σ to construct the sphere \mathbb{S}^{2} using only two regular and injective parametric surfaces.
(a) Fix any $(u, v) \in \mathbb{R}^{2}$. The line through $(0,0,1)$ and $(u, v, 0)$ can be parametrised as

$$
\ell: \mathbb{R} \rightarrow \mathbb{R}^{3}, \quad \ell(t)=(0,0,1)+[(u, v, 0)-(0,0,1)] t=(u t, v t, 1-t) .
$$

Thus, we need to find the point $\ell(\mathrm{t})$ which lies on $\mathbb{S}^{2} \backslash\{(0,0,1)\}$. For this, we solve

$$
1=|\ell(t)|^{2}=t^{2}\left(1+u^{2}+v^{2}\right)+1-2 t
$$

for t. Note the above has the solutions $t=0$ and $t=2\left(1+u^{2}+v^{2}\right)^{-1}$. The former corresponds to $\ell(0)=(0,0,1)$, while the latter corresponds to our desired point on $\mathbb{S}^{2} \backslash\{(0,0,1)\}$:

$$
\begin{aligned}
\sigma(u, v) & =\ell\left(\frac{2}{1+u^{2}+v^{2}}\right) \\
& =\left(\frac{2 u}{1+u^{2}+v^{2}}, \frac{2 v}{1+u^{2}+v^{2}}, 1-\frac{2}{1+u^{2}+v^{2}}\right) \\
& =\left(\frac{2 u}{1+u^{2}+v^{2}}, \frac{2 v}{1+u^{2}+v^{2}}, \frac{-1+u^{2}+v^{2}}{1+u^{2}+v^{2}}\right)
\end{aligned}
$$

(b) Suppose $\sigma\left(u_{1}, v_{1}\right)=\sigma\left(u_{2}, v_{2}\right)$. Then, by the definition of σ :

$$
\begin{equation*}
\frac{2 u_{1}}{1+u_{1}^{2}+v_{1}^{2}}=\frac{2 u_{2}}{1+u_{2}^{2}+v_{2}^{2}}, \tag{1}
\end{equation*}
$$

$$
\begin{gather*}
\frac{2 v_{1}}{1+u_{1}^{2}+v_{1}^{2}}=\frac{2 v_{2}}{1+u_{2}^{2}+v_{2}^{2}}, \tag{2}\\
\frac{-1+u_{1}^{2}+v_{1}^{2}}{1+u_{1}^{2}+v_{1}^{2}}=\frac{-1+u_{2}^{2}+v_{2}^{2}}{1+u_{2}^{2}+v_{2}^{2}} . \tag{3}
\end{gather*}
$$

Note that (3) can be rewritten as

$$
1-\frac{2}{1+u_{1}^{2}+v_{1}^{2}}=1-\frac{2}{1+u_{2}^{2}+v_{2}^{2}},
$$

from which we conclude that $1+u_{1}^{2}+v_{1}^{2}=1+u_{2}^{2}+v_{2}^{2}$. Applying this to (1) and (2) yields $u_{1}=u_{2}$ and $v_{1}=v_{2}$, respectively. As a result, σ is indeed injective.

Next, we compute the partial derivatives of σ :

$$
\begin{aligned}
& \partial_{1} \sigma(u, v)=\frac{2}{\left(1+u^{2}+v^{2}\right)^{2}}\left(1-u^{2}+v^{2},-2 u v, 2 u\right), \\
& \partial_{2} \sigma(u, v)=\frac{2}{\left(1+u^{2}+v^{2}\right)^{2}}\left(-2 u v, 1+u^{2}-v^{2}, 2 v\right) .
\end{aligned}
$$

Taking a cross product, we see that

$$
\begin{aligned}
\left|\partial_{1} \sigma(u, v) \times \partial_{2} \sigma(u, v)\right| & =\frac{4}{\left(1+u^{2}+v^{2}\right)^{4}}\left|\left(1+u^{2}+v^{2}\right)\left(-2 u,-2 v, 1-u^{2}-v^{2}\right)\right| \\
& =\frac{4}{\left(1+u^{2}+v^{2}\right)^{2}}|\sigma(u, v)| .
\end{aligned}
$$

Since $\sigma(u, v) \in \mathbb{S}^{2}$, we have that $|\sigma(u, v)|=1$, and hence

$$
\left|\partial_{1} \sigma(u, v) \times \partial_{2} \sigma(u, v)\right|=\frac{4}{\left(1+u^{2}+v^{2}\right)^{2}} \neq 0, \quad(u, v) \in \mathbb{R}^{2}
$$

As a result, σ is regular.
(c) We already know $\sigma(u, v) \in \mathbb{S}^{2} \backslash\{(0,0,1)\}$ for any $(u, v) \in \mathbb{R}^{2}$. Thus, it remains to show that given any $(x, y, z) \in \mathbb{S}^{2} \backslash\{(0,0,1)\}$, there is some $(u, v) \in \mathbb{R}^{2}$ such that $(x, y, z)=\sigma(u, v)$.

By the definition of σ, our desired (u, v) must satisfy that $(u, v, 0)$ lies on the line L through (x, y, z) and $(0,0,1)$. Observe that L can be parametrised as

$$
L: \mathbb{R} \rightarrow \mathbb{R}^{3}, \quad \mathrm{~L}(\mathrm{t})=(0,0,1)+[(x, y, z)-(0,0,1)] t=(x t, y t, 1+(z-1) t) .
$$

Noting that

$$
\mathrm{L}\left(\frac{1}{1-z}\right)=\left(\frac{x}{1-z}, \frac{y}{1-z}, 0\right)
$$

we can then guess that

$$
(u, v)=\left(\frac{x}{1-z}, \frac{y}{1-z}\right)
$$

Finally, to check that $\sigma(u, v)$ indeed equals (x, y, z), we can directly check

$$
\sigma\left(\frac{x}{1-z}, \frac{y}{1-z}\right)=\left(\frac{2(1-z) x}{(1-z)^{2}+x^{2}+y^{2}}, \frac{2(1-z) y}{(1-z)^{2}+x^{2}+y^{2}}, 1-\frac{2(1-z)^{2}}{(1-z)^{2}+x^{2}+y^{2}}\right)
$$

Noting that $x^{2}+y^{2}+z^{2}=1$ (since $\left.(x, y, z) \in \mathbb{S}^{2}\right)$, the above simplifies to

$$
\sigma\left(\frac{x}{1-z}, \frac{y}{1-z}\right)=\left(\frac{2(1-z) x}{2-2 z}, \frac{2(1-z) y}{2-2 z}, 1-\frac{2(1-z)^{2}}{2-2 z}\right)=(x, y, z)
$$

Consequently, we conclude that the image of σ is precisely $\mathbb{S}^{2} \backslash\{(0,0,1)\}$.
(d) From parts (a)-(c), we see that σ is an injective parametrisation of \mathbb{S}^{2}, and that the image of σ is $\mathbb{S}^{2} \backslash\{(0,0,1)\}$. Define in addition the parametric surface $\tau: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ by

$$
\tau(u, v)=\left(\frac{2 u}{1+u^{2}+v^{2}}, \frac{2 v}{1+u^{2}+v^{2}}, \frac{1-u^{2}-v^{2}}{1+u^{2}+v^{2}}\right) .
$$

Since τ is simply σ with the z-component negated, it follows that τ is an injective parametrisation of \mathbb{S}^{2}, and its image is $\mathbb{S}^{2} \backslash\{(0,0,-1)\}$. Thus, σ and τ together cover all of \mathbb{S}^{2}.

