3 Growp theory revistad
$n \geq 1$
$S_{n}:=t_{1}$ set is bijeticoss

$$
\{1 \ldots, n\}+\{1, \cdots n\}
$$

Thejeam 41

$$
\left|S_{n}, 0\right| \text { of a group. }
$$

cumpistion

$$
S_{n}=\operatorname{Sim}(\{1, \ldots, n\})
$$

The assbssed conrewark 1

$$
\$ 3
$$

$\operatorname{Prp} P 42$
S_{n} is an obliinn grup

$$
n \leq 2
$$

\& is NOT delian olforwiste.
pf $\quad n=1 \quad S_{1}=\left\{\begin{array}{c}1\} \\ p\end{array}\right.$
to idatity biection
Sendizy 1 to 1
$n=2$

$$
\begin{aligned}
S_{2}= & \left\{\left(\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)\right\} \\
& \text { Poy are Nol matrics!!! } \\
= & \left\{\begin{array}{cc}
(1)(2) \\
\text { II } \\
1
\end{array},\left(\begin{array}{ll}
1 & 2)
\end{array}\right\}\right.
\end{aligned}
$$

To check Hat this is ablian,

$$
1 \cdot(12)=(12) \cdot 1
$$

bat this is obvious!
$n \geq 3$ In this cause,

$$
\begin{aligned}
S_{n} \text { contains } f & =\left(\begin{array}{ll}
1 & 2
\end{array}\right) \\
g & =\left(\begin{array}{ll}
2 & 3
\end{array}\right)
\end{aligned}
$$

He bijection $\begin{gathered}\{1, \cdots, n\} \rightarrow\{1, \cdots n\} \\ 1 \mapsto 2\end{gathered}$

$$
\begin{aligned}
& 2 H 1 \\
& 3+3
\end{aligned}
$$

$$
(123) \quad n \not r n
$$

$$
\begin{array}{llll}
11 & 9 & f \\
f 05 & 1 & \mapsto & \mapsto 2 \\
2 & \mapsto & \mapsto 3 \\
3 & H & H 1 \\
X & 4 & 4 & H
\end{array}
$$

Thonture S_{n} is NJT ablian.
Subgtanis
INf Let $\left(G_{1} *\right)$ be a gave.

$$
\Gamma \subseteq G \text { a stheset }
$$

We say that Γ is a shostanp if $\left(\Gamma,\left.*\right|_{p}\right)$ is a grop

Or equivalently. it satistis
$(6,0)$ is $a, b \in \Gamma$
ten $a * b \in \Gamma$

$$
\begin{aligned}
& (G 1)^{-\delta} a, b \cdot c \in P_{1} \\
& (a * b) * c=a *(b * c)
\end{aligned}
$$

This always holds for free by seeing tom as dennents δG
(G2) Γ had to isentity demant e_{p}

$$
\text { (ie. } \begin{array}{r}
a * e_{p}=e_{p} * a=a \\
\\
\forall a \in P)
\end{array}
$$

In fuct

$$
\begin{aligned}
& e_{p}=e \text { (He iegatity } \\
& \text { element is } G \\
& \text { Why? } \\
& \text { gritaried by (G-2) } \\
& \text { Becurve } \\
& e_{p} * e_{p}=e_{p} \text { (ळ) for } G 1
\end{aligned}
$$

OTOH, th identity $e \delta G$
makes $\quad e_{p}=e_{p} * e$
By (0) (00)
By

$$
e_{\Gamma} * e_{p}=e_{p} * e
$$

Prop 14

$$
e_{p}=e .
$$

(G3) Every dement γ of Γ has on inverse in P. The inverse of γ exists in G
but (G3) here demanest tet t it has to be an element in Γ.

RE Not every subset of G is a stugsoun if G.

Examples (\mathbb{Z}, t)
How many streets is Zr?

$$
\begin{aligned}
& \{T 0],[2], T[4\} \\
& |2|+\sqrt{2} \mid \text { in }(G(0) \\
& \{[07,[3],\} \\
& \{[07,[4],[2]\} \\
& \{[0],[5],[10],[9],[2),[2)\} \\
& \text { (4) } \begin{array}{llll}
13) & 11 \\
\hline 6
\end{array}
\end{aligned}
$$

What are shbgtrups if \mathbb{Z}_{12} ?
There are 2^{12} sises.
The shbytonne are.
$\{00\}\} \quad \mathbb{Z}_{12}$
$\{[0],[1], \cdots \quad[12]\}$
$\{[0],[2],[4],(6),[8)$,
$\{(0)\}$
$\{[0],[3],[6],[9]\}$
$\{[0],[4],[8]\}$
$\{(0), 167\}$
Prop 43
A noh-empty surset T

$$
\text { if } G
$$

is a subgtaip

$$
\begin{array}{r}
\Leftrightarrow \quad g, h \in \Gamma \\
g * h^{-1} \in \Gamma \\
p \\
\text { Hinerese o } h \\
\text { in } G .
\end{array}
$$

If Lakct hots.
Thavem 44 (Lagtanes's thevem 1

G a finite group
$(|G|<\infty)$
Ha subytrin.
Then |HI divided $|G|$
RK If $G=\mathbb{Z}_{n_{1}}$
for any divisor d of n_{1}
tere cilwais is a shastroup
H of \mathbb{Z} s.t. $|H|=d$.

$$
\left\{\left\lceil\frac{n}{d}\right\rceil,\left\lceil\frac{2 n}{d}\right\rceil,\left\lceil\frac{3 n}{d}\right\rceil, \ldots,\left\lceil\left[\frac{d x h}{d}\right\rceil\right\}\right.
$$

