Today

- Final material an game theory (examinable)

Revision
Weak 4 - extreme point solutions basic feasible solutions
week 10/11 Game theory

General 2-plajer games

Example 12.1. Suppose that Rosemary and Colin are working on a joint project. Each of them can choose to "work hard" or "goof off." Both of them must work hard together to receive a high mark for the project. Both have utility 3 for receiving a high mark utility 1 for goofing off (regardless of what mark they receive) and utility 0 for working hard but not receiving a high mark. Give the payoff matrix for this game.

Colin

not zero-sum game

Rosemary's set ct strategies $R=\{\omega, g\}$
Colin's set of strategies $C=\{\omega, g\}$
Write out Rosemary's payctf function $u_{1}: R \times C \rightarrow \mathbb{R}$
Write cut Colin's payoff function $u_{2}: R \times C \rightarrow \mathbb{R}$

$$
\begin{array}{ll}
u_{1}(w, w)=3 & u_{2}(w, w)=3 \\
u_{1}(w, g)=0 & u_{2}(w, g)=1 \\
u_{1}(g, w)=1 & u_{2}(g, w)=0 \\
u_{1}(g, g)=1 & u_{2}(g, g)=1
\end{array}
$$

For general 2-plager game
Let $R=$ set of Rosemary's strategies
$C=$ set ot Colin's strategies
For $r \in R$ and $c \in C,(r, c)$ is a Nash equilibrium it neither player has an incentive to change strategies (assuming the other player doesn't change strategy) i.e.
write this in symbols assuming u_{1} is Rosemary's payctl function u_{2} is Colin's poyctt- function

$$
\begin{array}{ll}
u_{1}(r, c) \geqslant u_{1}\left(r^{\prime}, c\right) & \forall r^{\prime} \in R \\
u_{2}(r, c) \geqslant u_{2}\left(r, c^{\prime}\right) & \forall c^{\prime} \in C
\end{array}
$$

Does ar example have any Nash equiliblia?
Colin yes

(ω, g) and (g, w) ane net Nash equilibrial.

How con we systematically and quickly find all pure Nash equilibrium.
Method 1: check each $(r, c) \in R \times C$. Quite slow

Example 12.2. Find all pure Nash equilibria for the games with the following payoff matrices. Colin

	c_{1}	c_{2}	c_{3}
r_{1}	$(1,0)$	$(0, \underline{1})$	$(\underline{1}-1)$
r_{2}	$(-1, \underline{1})$	$(1,0)$	$(0, \underline{1})$
	$N o_{\uparrow}$ Nash equilibrial.		

$3_{\text {pure }}$ Nash equilibrial:
$\left(r_{1}, c_{2}\right),\left(r_{2}, c_{1}\right)$,
$\left(r_{2}, c_{3}\right)$
$\left(r_{i}, c_{j}\right)$ is a (pure) Nash equilibrium if and only it
ci gives highest pact to Colin when Rosemary plays ri (we say c_{j} is Colin's best response to r_{i})
and
r_{i} Gives highest payctt to Rosemary
when Colin plays c_{i} (we say r_{i} is Rosemary's best response to c_{j}).
Method: mark each player's best response to the other player's strategies.
(r_{i}, c_{j}) is a Nash equilibrium if and only it it is marked twice
Not all general 2-player games hae a pe Nash equilibrig

$$
\begin{aligned}
& R=\left\{r_{1}, \ldots, r_{k}\right\} \quad \text { Rcseman's strategies } \\
& C=\left\{c_{1}, \ldots,(l\}\right. \text { Colin's strategies } \\
& \left.\Delta(R)=\left\{\underline{x}=\left(x_{1}, \cdots\right) x_{k}\right): x_{1}+x_{2}+\cdots+x_{n}=1\right\} \\
& A(C)=\left\{\underline{y}=\left(y_{1}, \ldots, y_{l}\right): y_{1}+y_{2}+\cdots+y_{l}=1\right\}
\end{aligned}
$$

Recall deft: consider a zero-sum game with payt matrix A.
For $x \in \Delta(R)$ and $\underline{y} \in A(C),(\underline{x}, \underline{y})$ is a mixed Nash equilibrium it

$$
\begin{array}{ll}
& x^{\top} A \underline{y} \geqslant \underline{x}^{\top} A \underline{y} \quad \forall \underline{x}^{\prime} \in \Lambda(R) \\
\text { and } \quad \underline{x}^{\top} A \underline{y} \leqslant \underline{x}^{\top} A \underline{y}^{\prime} \quad \forall \underline{y}^{\prime} \in \Lambda(C)
\end{array}
$$

Detu Consider a general game with paycth matrix A_{1} for Rosemary and A_{2} for Colin For $\underline{x} \in \Delta(R)$ and $\underline{y} \in \Delta(c), \quad(\underline{x}, \underline{y})$ is a mixed Nash equilibrium if

$$
\begin{aligned}
& x^{\top} A_{1} y \geqslant x^{\prime} A_{1} y \quad \forall x^{\prime} \in \Delta(R) \\
& x^{\top} A_{2} y \geqslant x^{\top} A_{2} y^{\prime} \quad \forall y^{\prime} \in A(c)
\end{aligned}
$$

John Nash proved that every general 2-plager game has a mixed Nash equilibrium using Brawer's fixed point the adm from topology. No easy way of finding there mixed Nash equilibrium.

See exam info document an QMplus (update by Monday)

Recap quiz (paraphrased defns/theorems)
Consider on LP in standard equation form
maximise $c^{\top} \underline{x}$
subject to $\quad A \underline{x}=\underline{b}, \underline{x} \geqslant 0$.
An extreme point solution is a feasible solution x such that x connect be written as $\lambda \underline{y}+(1-\lambda) \underline{2}$
Where y, z are district feasible solutions and $\lambda \in[c, 1]^{-}$.

A basic feasible solution is a foasibu solution x in which the nen-zero entries of x correspond to linearly columns of A. independent
Last time we proved two results
(1) Every LP (in standard equation form) has an optima' solution that is an extreme point solution (provided it has at least ane optimal solution).
(2) Given an LP in standard equation form every basic feasible solution is an extreme point solution and vice versa. (prot not completed)
(b) Consider the following linear program in standard equation form:

$$
\begin{array}{lrl}
\text { maximise } & x_{1}+2 x_{2}-3 x_{3}+7 x_{5} & \\
\text { subject to } & x_{1}+2 x_{2}+2 x_{3}+x_{4} & =3, \\
x_{1}+2 x_{2}+7 x_{3}+x_{5} & =3, \\
2 x_{1}+4 x_{2}+7 x_{3}+x_{6} & =6, \\
x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} & \geq 0
\end{array}
$$

For each of the following values of $\mathbf{x}^{\top}=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$ say whether or not this value is a basic feasible solution of this linear program and also whether or not it is an extreme point solution of this linear program. Justify your answers.
(i) $\mathbf{x}^{\top}=(1,1,0,0,0,0)$
(ii) $\mathbf{x}^{\boldsymbol{\top}}=(1,0,0,2,2,4)$
(iii) $\mathbf{x}^{\top}=(0,0,0,3,3,6)$

Here $A=\left(\begin{array}{lllll}1 & 2 & 2 & 1 & 0 \\ 1 & 2 & 7 & 0 & 1 \\ 1 \\ 2 & 4 & 7 & 0 & 0 \\ 0 & 1\end{array}\right)$
(iii) This is a BFS.

First its dear that all the constraints and sign restrictions are satistied
Also we must check that $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ are
linearly independent. because they are the standard basis for \mathbb{R}^{3}.
[Alternatively if the solve $\lambda_{1}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)+\lambda_{2}\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)+\lambda_{3}\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)=\underline{0}$ gives $\lambda_{1}=\lambda_{2}=\lambda_{3}=0$, which shows there vectors are linearly independent.J
Hence it is also an extreme point solution by a thearm in lectmes.
(i) $(1,1,0,0,0,0)^{\prime}$ satisfies constraints and sign restrictions so is feasible.
By definition, $(1,1,0,0,0,0)$ is a BES if and only it $\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)$ and ($\left.\begin{array}{c}2 \\ 2 \\ 4\end{array}\right)$ are linearly independent.
However these two vectors are linearly dependent because $2\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)-\left(\begin{array}{l}2 \\ 2 \\ 4\end{array}\right)=\underline{O}$ so this is nola BES.
This is not an extreme paint solution (by a theorem from lectney x is an extreme point solution it and only if it is a BFS)..
(ii) This is not a BFS because the vectors $\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ are linearly dependent Since $\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)-\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)-\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)-2\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)=\underline{0}$.
Also not an extreme point solution by the sane theorem from lectimes (in port (i)).
[Alternative: hone mare vectors than the dimesion of- the vectors, so linearly dependent J.
(c) Consider an arbitrary linear program in standard equation form:

$$
\begin{array}{ll}
\operatorname{maximise} & \mathbf{c}^{\top} \mathbf{x} \\
\text { subject to } & A \mathbf{x}=\mathbf{b} \\
& \mathbf{x} \geq \mathbf{0}
\end{array}
$$

Suppose that \mathbf{x} is an optimal solution to this linear program. Show that if \mathbf{x} is not an extreme point solution then we can express \mathbf{x} as $\mathbf{x}=\lambda \mathbf{y}+(1-\lambda) \mathbf{z}$ where $\lambda \in(0,1)$ and \mathbf{y} and \mathbf{z} are two different optimal solutions of this program.

This is a bodewarle question
This is claim l from long prot in week 4.
Basic idea.
\underline{x} is optimal so \underline{x} is feasible.
x is not extrueue point solution means by definition that x con be written as
$\underline{x}=\lambda \underline{y}+(1-\lambda) \underline{\text { for }}$ distinct feasible solutions y and z and $\lambda \in(0,1)$.
Then show y and z are optimal
Get credit for clearly saying what you've trying to do even if you con't actually do it.

Basic termindogy
Strategy, outcome, payoftmatrix, zero-sum game, mixed strategy
choice, pair ot strategies, payctt for each outcome, vector of probabilities.
For zero sm a games
What is a pure Nash equilibrium in wards/symbols?
What is the security level at a strategy in wards/symbals?
What is best security level for a player?
How are the related?
Then
$\left(r_{p}, c_{q}\right)$ is a pure Nash equilibrium oft security of $r_{p}=$ security of c_{q}.

For zero sum games
How do we compute expected payoff
when players use mixed strategy
If Rasemay ploys $x \in A(n)$ and (chin phys $y \in A(C)$ expectees pact $x^{\top} A y=\sum_{i, j} a_{i j} x_{i} y_{j}$
What is a mixed Nash equilibrium in words/symbels?
What is the secwity level of a mixed strategy
in wards/symbels
(\underline{x}, y) is mixed Nash equilibrium it neither player has an incentive to change
security of x is smalust puyctt to Rosemary it she ploys x and Colin plays a pure statuary

$$
=\min _{j} x^{\top} A e_{j}=\min _{j} x^{\top} A
$$

How ave they related.
How do we write LP's to find optimal mixed strategy? c.e. mixed strategy with best secwits.

Question 5 [24 marks].
(a) In the following question, let $\beta \in \mathbb{R}$ be a fixed constant. Suppose a zero-sum 2-player game has the following payoff matrix, given from the perspective of the row player:

	1	2
1	β	6
2	-6	0

(i) Suppose that $\beta=0$. Give the security levels for each of the row and column players' strategies. List all pure Nash equilibria for this game or explain why the game does not have a pure Nash equilibrium.
(ii) For what range of possible values for β is $(1,2)$ a pure Nash equilibrium for this game? Justify your answer.
(iii) For what range of possible values for β does this game have a general Nash equilibrium? Justify your answer.
(i)

	1	2
1	0	6
2	-6	0

Security level fer

$$
\begin{aligned}
\text { raw player's strategy 1 } & =0 \\
2 & =-6 \\
\text { column player's strategy 1 } & =0 \\
2 & =6
\end{aligned}
$$

The outcome $(1,1)$ is a pul Nash equilibrium because the security levels match.
No other pure Nash equilibria.

$(i i)$| | 1 | 2 |
| :---: | :---: | :---: |
| 1 | M | 6 |
| 2 | -6 | 0 |

$(1,2)$ is a pure a pure
Nash equilibrium if and andy if
securitglevel when
colin plays 2

This is 6 no what a is

We hove $\min (\beta, 6)=6$ if and any if $B \geqslant 6$.
(iii) All values of ss because by tum from lectures all 2 -player zero-sum games have a mixed Nash equilibrium.
(b) Consider the following 2-player game. Rosemary and Colin each select a number n from the set $\{1,2,3\}$. If they choose the same number, neither player wins anything. Otherwise, if the sum of their numbers is at least 5 , both of them win $£ 1$. Finally, if their numbers do not match and do not sum to at least 5, then the player who selected the largest number n wins $£ n$ and the other player loses $£ n$.
(i) Give the payoff matrix for this game (as usual, suppose that Rosemary is the row player and give her payoff first in each cell).
(ii) Is this a zero sum game? Justify your answer.
(iii) List all pure Nash equilibria for this game.
$2023 Q 4$
(b) Consider the 2-player zero-sum game with the following payoff matrix (which is given, as usual, from the perspective of the row player).

\[

\]

(i) Write a linear program that finds the optimal mixed strategy for the row player (i.e. the mixed strategy with the best security level). You do not have to solve this linear program.
(ii) Consider the mixed strategy \mathbf{x} for the row player and \mathbf{y} for the column player given by $\mathbf{x}^{\top}=(1 / 3,2 / 3)$ and $\mathbf{y}^{\top}=(5 / 6,1 / 6)$. Show that this pair of strategies is a mixed Nash equilibrium for this game.
(ii) It is enough to show that the searity level of x is equal to security level of y.
expected puyctt when Rosemary plays x, (olin plays C_{1}

$$
1 / 3 \times 6+2 / 3 \times 3=4
$$

Raemay plays x, colin plays c_{2}

$$
1 / 3 x-6+2 / 3 \times 9=4
$$

secrity level of $x=\min (4,4)=4$
expected payctt when Colin plays y, Rosemary plays r_{2}

$$
5 / 6 \times 6+\frac{1}{6} \times(-6)=4
$$

Colin plays y, Rosemary plays r_{2}

$$
5 / 6 \times 3+1 / 6 \times 9=4
$$

Eecwity for $y=\max (4,4)=4$
Eecrity levels match and so (x,y) is by a theorem in lectures.

