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Plan

I Multiple States/Transitions

I Multiple Decrements

I Projected Future Cashflow Techniques
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Multiple States

I The occupancy probability -probability that (x) now in state i
will remain in state i for t years can be computed using:

tpiix = exp

(
−

t∫
0

m
∑

j=0,j 6=i
µijx+sds

)
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Multiple States

Kolmogorov forward equations:

t+hp
ij
x = tpijx hp

jj
x+t +

m
∑

k=0,k 6=j
tpikx hp

kj
x+t

hp
jj
x+t = 1− h

m
∑

k=0,k 6=j
µjkx+t + o (h)

hp
kj
x+t = hµkjx+t + o (h)
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Multiple States

EPV of continuous state dependent time annuity:

_
a
ij
x =

∞∫
0
e−δt

tpijx dt

If the annuity is payable at the start of each year, from the current
time, conditional on the life being in state j , given that the life is
currently in state i .
The EPV of a discrete anuity due is:

..
aijx =

∞
∑
k=0

v k kp
ij
x

If i 6= j 0pijx = 0
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State dependent annuities

The EPV of a term anuity due is:

..
aijx :n =

n−1
∑
k=0

v k kp
ij
x

_
a
ij
x :n =

_
a
ij
x − e−δn

m
∑
k=0

npikx
_
a
kj
x+n

For example: alive-dead model:
_
a
00
x :n =

_
a
00
x − e−δn

np00x
_
a
00
x+n

Sickness-death
model:

_
a
00
x :n =

_
a
00
x − e−δn

np00x
_
a
00
x+n − e−δn

np01x
_
a
10
x+n

6 of 33



State dependent insurance benefits

Suppose a unit benefit is payable immediately on each future
transfer into state j , given that the life is currently in state i
(which may be equal to j). Then the expected present value of the
benefit is:

_
A
ij

x =
∞∫
0

∞
∑

k=0,k 6=j
e−δt

tpikx µkjx+tdt
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State dependent insurance benefits

Note that this benefit does not require the transition to be directly
from state i to state j , and if ther is a posibility of transitions into
state j than it values a benefit of 1 paid each time the life
transitions into state j .

_
A
ij

x :n =
n∫
0

m
∑

k=0,k 6=j
e−δt

tpikx µkjx+tdt

=
_
A
ij

x − e−δn
m
∑
k=0

npikx
_
A
kj

x+n
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State dependent insurance benefits

Alive- dead model:
_
A
00

x :n =
_
A
00

x − e−δn
np00x

_
A
00

x+n

Sickness-death model for i = 0 and j = 1:

_
A
01

x :n =
_
A
01

x − e−δn
np00x

_
A
01

x+n − e−δn
np01x

_
A
11

x+n
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Premiums

I We assume that premiums are calculated using the
equivalence principle and that lives are in state 0 at the policy
inception date.

I Premiums are calculated by solving the equation of value
using the appropriate anuity and insurance functions
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Policy values

The state j policy value time t,denoted tV (j) is the expected value
at time t of the future loss random variable for a policy which is in
State j at time t.

tV (j) = EPV at t of future benefits + expenses

−EPV at t of future premiums,

given the insured is in state j at t
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Policy values

The general form of Thiele’s equations:

d
dt
V i (t) = V i (t)δ(t)− bi (t) ∑

j 6=i
µijx+t

(
bij (t) + V j (t)− V i (t)

)
Note that this is a system of simultaneous ODEs, one for each
state i . If, as is usually the case, benefits and force of interest do
not depend on t, we get a simpler system:

d
dt
V i (t) = V i (t)δ− bi ∑

j 6=i
µijx+t

(
bij + V j (t)− V i (t)

)
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Multiple Decrement Model

Multiple decrement models are extensions of standard mortality
models with simultaneous several causes of decrement.

A multiple decrement model is a multi-state model with:

I one active state (initial, State 0)
I one or more absorbing exit states.
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Multiple Decrement Probabilities

I will introduce equivalent notations from the DHW textbook and
the accepted (in practice) UK notations

I Dependent survival probability (): tp00x or t (ap)x
I Dependent transition probability: tp

0j
x or t (aq)

j
x

I Dependent total transition probability: tp0•x or t (aq)x
I Forces of transition: µ0jx+t or µjx+t
I Total force of transition µ0•x+t or (aµ)x+t
I Multiple decrement table

I Active lives: lx or (al)x
I Decrements: d (j )x or (ad)(j )x
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Multiple Decrement Table: one year relations in an
example

p00x + p
01
x + p

02
x = 1

or in the UK notation:

(ap)x + (aq)
1
x + (aq)

2
x = 1
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Independent Single Decrement Example

A simpler assumption: One exit state j with the same transition
intensity into the state: independent single decrement model for
decrement j

Reduced two state model with:
Independent survival probability denoted as:

tp
∗(j)
x ≡ tpjx = exp

(
−

t∫
0

µ0jx+udu
)

and
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Independent Single Decrement Example

Independent transition probability:

tq
∗(j)
x ≡ tqjx =

t∫
0
sp
∗(j)
x µ0jx+sds

Note that the second notation refers to the UK notation.
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.

Similar to the life table functions lx and dx for the alive- dead
model we will derive a multiple decrement table
Let lx0 be the radix of the table at the initial age x0
Define

lx+t = lx0 tp
00
x0

and for j = 1, 2, ...m and x ≥ x0,

d (j)x = lxp0jx

lx - the expected number of active lives (in state 0) at age x out of
lx0

d (j)x - the expected number of lives exiting by mode of decrement j
in the year of age x to x + 1
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Fractional age with UDD

UDD: here it means uniform distribution of decrements
For 0 ≤ t ≤ 1 and integer x and for each exit mode j assume that
for j 6= 0 :

tp0jx = t × p0jx
The exits from the starting state are uniformly spread over each
year.
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Fractional age with constant transition forces

For 0 ≤ t ≤ 1 and integer x assume that for each exit mode j ,
µ0jx+t is a constant for each age x and equal to µ0j (x) :

µ0• (x) =
m
∑
k=1

µ0k (x)

µ0• (x) is the total force of transition out of state 0 at age x + t
for 0 ≤ t < 1 and:

tp00x = exp
(
−µ0• (x) t

)
Note that the total force of transition out of state 0 for the year of
age x to x + 1.

p0•x = 1− p00x =
m
∑
k=1

p0kx

= 1− exp
(
−µ0• (x)

)
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Constant transition forces

Then for integer x and for 0 ≤ t < 1, we have:

tp0jx =
t∫
0
rp00x µ0jx+rdr =

t∫
0
e−rµ

0•(x )µ0j (x) dr

hence:

tp0jx =
µ0j (x)
µ0• (x)

(
1− e−tµ0•(x )

)
=

µ0j (x)
µ0• (x)

(
1−

(
p00x
)t)

Let t → 1 : µ0j (x )
µ0•(x ) =

p0jx
p0•x

and hence:

tp0jx =
p0jx
p0•x

(
1−

(
p00x
)t)
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Constant transition forces

We can also use:

tp0jx =
µ0j (x)
µ0• (x)

(
1− e−tµ0•(x )

)
For the year of age x to x + 1 :

p0jx =
µ0jx
µ0•x

(
1− e−µ0•x

)
=

µ0jx
µ0•x

p0•x
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Note that the decrement j independent survival probability is:

p∗(j)x = exp

(
−
1∫
0

µ0jx+tdt

)
= exp

(
log
(
p00x
) p0jx
p0•x

)
Hence:

p∗(j)x =
(
p00x
) p0jx
p0•x (9.8)

p0jx =
log p∗(j)x

log p00x
p0•x

Withp00x =
m
∏
j=1
p∗(j)x and p0•x = 1− p00x
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How did we get that?

Assume UDD each decrement is uniformly distributed in the
multiple decrement model and for an integer x and 0 ≤ t < 1 :

tp0kx = tp0kx
tp00 = 1− tp0•x

tp00x µ0jx+t = p
0j
x

or:

µ0jx+t =
p0jx

1− tp0•x

24 of 33



How did we get that?

Integrating on both sides:

1∫
0

µ0jx+tdt =
p0jx
p0•x

(
− log

(
1− p0•x

))
=

p0jx
p0•x

(
− log

(
p00x
))

= − log
(
p00x
) p0jx
p0•x

which we substitute in p∗(j)x = exp

(
−
1∫
0

µ0jx+tdt

)
.
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Profit testing

The purpose of a profit test is to identify the profit which the
insurer can claim from the contract at the end of each time period
Profit test basis: assumptions about:

I the expenses which will be incurred,
I the survival model for the policyholder,
I the rate of interest to be earned on cash flows within each
time period before the profit is released

I other items such as an assessment of the probability that the
policyholder surrenders the policy.
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Profit testing

Typical feature of net cash flows: several of the net cash flows in
later years are negative.

The reserve may be equal to the policy value, or may be some
different amount.
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Profit vector

Profit at t :

Prt = (1+ i) (P + t−1V − Et )− Sqx+t−1 − tVpx+t−1

Alternative way of writing the profit:

Pr t = (1+ i) (P − Et ) + ∆Vt − Sqx+t−1

where ∆Vt = (1+ i) t−1V − tVpx+t−1 is the change in reserve
in year t.
The vector Pr = (Pr0, ...,Prt )′ is called the profit vector for the
contract.
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Reserves: Profit signature

Multiplying Prt by (t − 1) px gives a vector each of whose
elements is the expected profit at the end of each year given only
that the contract was in force at age x (in our example 60).
Π0 = Pr0;
Πt = (t − 1) p60Prt for t = 1, 2, ..., 10.

The vector: (Π0,Π1, ...,Π10)
′ is the profit signature

The profit signature is the key to assessing the profitability of the
contract.
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Profit measures

The internal rate of return (IRR) is the interest rate j such that
the present value of the expected cash flows is zero. Given a profit
signature (Π0,Π1, ...,Πn)

′ for n year contract the internal rate of
return is j where:

n
∑
t=0

Πtv tj = 0

I We can use the risk discount rate to calculate the expected
present value of future profit (EPVFP), also called the net
present value (NPV) of the contract. Let r be the risk
discount rate.

The NPV is the present value, at rate r , of the projected profit
signature cash flows, so that:

n
∑
t=0

Πtv tr = 0
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Profit measures

The profit margin is the NPV expressed as a proportion of the
EPV of the premiums, evaluated at the risk discount rate.

For a contract with level premiums of P per year payable mthly
throughout an n year contract issued to a life aged x , the profit
margin is

Profit Margin =
NPV

P
..
a(m)x :n
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Profit measures

Discounted payback period (DPP) - the break-even period.

Using the risk discount rate ,r , and is the smallest value of m such

that
m
∑
t=0

Πtv tr ≥ 0

The DPP represents the time until the insurer starts to make a
profit on the contract.
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