Last week, we startich
§Permutations
$S_{n}=$ the set of permatations
(bijetins)
of $\{7, \ldots, n\}$
An element f of S_{n} is otten written δ

$$
f=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & \ldots & n \\
f(n) & f(2) & f(3) & f(4) & \ldots & f(n)
\end{array}\right)
$$

We defined fog

$$
\{1, \ldots, n\}-9,\{1, \cdots, n\}
$$

If

$$
\{a, \cdots, n\}
$$

$$
8 \quad f^{-1}
$$

Let $n=8$

$$
\begin{aligned}
& f=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
2 & 3 & 4 & 1 & 8 & 6 & 7 & 5
\end{array}\right) \\
& \underbrace{1 \stackrel{f}{\leftrightarrows} 2 \stackrel{f}{f} 3 \stackrel{f}{t} 45}_{f}
\end{aligned}
$$

$\underbrace{5 \stackrel{t}{H} 87}_{t}$
C f f is male up
\overbrace{f}^{77} "loops
DNA $\left\{\gamma_{1}, \cdots, \gamma_{N}\right\}^{\{\{1, \cdots, n\}}$ Is a sibsel io N distiuct intrgers befween 1 ad n

Write

$$
\left(\begin{array}{llll}
\gamma_{1} & \gamma_{2} & \cdots & \gamma_{N}
\end{array}\right)
$$

to mean te permutation $\delta\{1, \cdots, n\}$ that sends This is culled

$$
\begin{aligned}
& \gamma_{1} \mapsto \gamma_{2} \\
& \gamma_{2} \mapsto \gamma_{3}
\end{aligned}
$$

a cycle
$\gamma_{N-1} H \gamma_{N}$
$(1 \leq N \leq M)$

$$
\gamma_{N} H \gamma_{1}
$$

and leaves all otter integers unchanged

Example

$$
\left.\begin{array}{l}
f=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
2 & 3 & 4 & 1 & 8 & 6 & 7 \\
5
\end{array}\right) \\
1 H 2
\end{array}\right)
$$

$$
(6) \in S
$$

is He identity map senile 6 to 6
as wall as station 1 to 1

$$
2 \times 2
$$

Similarly (7) is the identity permutation of $\$ 8$.

The element $\left(\begin{array}{llll}\gamma_{1} & \gamma_{2} & \cdots & \gamma_{N}\end{array}\right)$ can be written as

$$
\left(\begin{array}{ccccccc}
1 & 2 & 3 & \cdots & \gamma_{1} & \cdots & \gamma_{2}
\end{array} \cdots \gamma_{N} \cdots n\right)
$$

By definition,

$$
\begin{aligned}
& \left(\gamma_{1} \gamma_{2} \cdots \gamma_{N}\right) \\
& =\left(\gamma_{2} \gamma_{3} \cdots \gamma_{N} \gamma_{1}\right) \\
& =\left(\gamma_{3} \gamma_{4} \cdots \gamma_{N} \gamma_{1} \gamma_{2}\right)
\end{aligned}
$$

Simply because they contain the same set of information.

$$
\begin{aligned}
& R\left(\gamma_{1} \gamma_{2} \cdots \gamma_{N}\right)^{-1} \in S_{n} \\
& \left(\gamma_{N} \gamma_{N-1} \cdots \gamma_{2} \gamma_{1}\right) \\
& f=(1234) \in S_{8} \\
& f^{-1}: 1 \mapsto 4 \\
& 2 H 1 \\
& 3 H 2\left(\begin{array}{ll}
12345678 \\
4 & 1235678
\end{array}\right) \\
& 4 \mapsto 3
\end{aligned}
$$

Example $n=4$

$$
f=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 4 & 2 & 3
\end{array}\right)
$$

Write this in te cycle form
Compute the inverse

$$
\begin{gathered}
1+1 \\
f=(243)=(432)=(324) \\
f^{-1}=(342)=(423)=(234)
\end{gathered}
$$

$$
\begin{aligned}
& f=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 4 & 2
\end{array}\right) \\
& f^{-1}: 1 \mapsto 1 \\
& 2 \mapsto 3 \\
& 3 H 4 \\
& 4 H 2 \\
& \Rightarrow(234) \\
& \operatorname{Def} \stackrel{\text { If }}{=} \underset{\left(\gamma_{1}, \ldots \gamma_{N}\right)}{\left(\delta_{1}, \ldots . \delta_{M}\right)} \in \delta_{n}
\end{aligned}
$$

shave no common element,
we shy that they are disjoint

Example

$$
f=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 3 & 78 \\
2 & 1 & 8 & 6 & 7 & 5
\end{array}\right)
$$

(1234)
$(58)<$
(6) «tler
(7) \& are 4 district cycles in f.

$$
f=(1234) \cdot(58) \cdot(6) \cdot(7)
$$

\uparrow
we consider them all as cements io S_{8}

$$
\begin{aligned}
& =(1234) \cdot(58) \\
& =(58) \cdot(1234)
\end{aligned}
$$

Theorem 39
Any perranitation can be written us a composition of disjoint cycles.

This representation is unique
up to the fact that

- He cycles can be written in any oked
- cade cycle can be started
at any pist
- cycles of length 1
ann be left out.
Example

$$
\begin{aligned}
& f=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
4 & 7 & 3 & 8 & 7
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2ト7) } \\
& \text { (1) } 4865 \\
& \text { (27) }
\end{aligned}
$$

$$
\begin{aligned}
3 & \mapsto 3 \Rightarrow(3) \\
f & =(14865) \cdot(27)(3) \\
& =(14865) \cdot(27) \\
& =(27)(14865) \\
& =(72)(86514)
\end{aligned}
$$

Def cel f be an ekment is S_{n}. The orter of f is defined to
be the number of times we ned to compose f by itself to get to identity

To put it another way,

$$
\text { let } f^{N}=f_{0} \circ \ldots \circ f
$$

The order of f is the smallest N

$$
\text { sit. } \quad f^{N}=1 \text {. }
$$

Example

- The order of $f=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2\end{array}\right)$ in S
is $2^{(13)(24)}$
1
$H 3$
Teoreved (13)
2 H4 2
as me element $\delta \cdot \frac{S}{4}$
3H1H3
2
$4 \mathrm{H}_{2} \mathrm{H} 4$
$1+341$
$341+3$
- The order if $g=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3\end{array}\right)$
$(143)|2|$
in S_{4}

$$
\left[\begin{array}{l}
1 H 4 \\
1 H 2
\end{array} \mathrm{H}_{3}^{9} H 1 \text { is } 3\right.
$$

- The order of $\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1\end{array}\right)$ in $S 4$ is 4
Prop 40
The order of a permutation is the least common multiple
of te lerfths of to cycles corders
in the disjuint cycle exphossion
Examps

$$
\begin{aligned}
f & =\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 4 & 1 & 2
\end{array}\right) \\
& =(13)(24) \\
& \sim_{\hat{p}} \sim
\end{aligned}
$$

lentth 2 lesth 2
orker 2 urder 2

Since $l_{\text {cim of }} 2$ \& 2 is 2 the urder of f i\$ 2

Example

$$
\begin{aligned}
& f=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 3 & 2 & 1 & 4
\end{array}\right) \\
& =\underbrace{\left(\begin{array}{lll}
1 & 5 & 4
\end{array}\right)}_{\text {He ovker }} \cdot\left(\begin{array}{ll}
2 & 3
\end{array}\right) \\
& 43 \quad 42 \\
& \begin{array}{c}
\text { to length } \\
3
\end{array}
\end{aligned}
$$

Accurig to Proposition 40,
the order of f is th $k m(3.2)$

$$
\begin{aligned}
& 12345 \\
& 53214
\end{aligned} \quad(1.54)(23)=6
$$

$$
\begin{aligned}
& 1-5 H 4+1 H 5 H 4 H 1 \\
& 2 H 3+2 H 3+2 H 3 H 2 \\
& 3 H 2+3 H 2 H 3 H 2 H 3 \\
& 4 H 1 H 5+4 H 1 H 5 H 4 \\
& 5 H 4 H 1+5 H 4 H 1 H 5
\end{aligned}
$$

So 6 is the order oft. 1

