Weok 11

- Assolsed consiework 2 Sentive 11 am (thth δ April to be shamitted vin *omplus*
- A Mack exam parier

Typo

$$
\begin{aligned}
\cdots= & \operatorname{gdd}\left(x^{8}+[2],\right. \\
& \rightarrow[2] x^{6}+[\sqrt{2})
\end{aligned}
$$

$乌$ Permuntations
Det Let \& be a skt A permatation of S is a function $f: S \rightarrow S$
which is biection.

$$
\begin{aligned}
& \text { ingetive \& Sniretive. } \\
& \text { it } \\
& f(t)=f(s) \\
& \text { siren } \$ 6 \$ \\
& r, \$ \in \$ \\
& \text { teme exids res } \\
& \text { then } r=S \\
& \text { s.t. } \quad f_{n}(f)=\beta
\end{aligned}
$$

Fix $n \geq 1$
Def The set if permutations of

$$
S=\{1, \cdots, n\}
$$

is denoted by S_{n}
and every element of S_{n} is written

$$
\text { as } f=\left(\begin{array}{ccccc}
1 & 2 & 3 & \cdots & n \\
f(1) & f(2) & f(3) & \cdots & f(n)
\end{array}\right)
$$

R2 Sine f is bijective.

$$
\{1, \cdots, n\}=\{f(1), \cdots, f(n)\}
$$

Example $n=8$

$$
f=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
4 & 7 & 3 & 8 & 1 & 5 & 2 & 6
\end{array}\right)
$$

f is a bijection a koskering of $1, \cdots, 8$

$$
\{1 \ldots, 8\} \rightarrow\{1, \cdots 8\}
$$

$$
\left.\begin{array}{llll}
\text { senting } & 1 & \mapsto & 4 \\
2 & \mapsto 7 \\
3 & H & 3 \\
4 & H & 8 \\
5 & \mapsto 1 \\
6 & \mapsto 5 \\
7 & \mapsto 2 \\
8 & H
\end{array}\right)
$$

RK It's tare to see otherwise but He first row dos NTST have to be in the order $2,2,3, \ldots$

$$
\left(\begin{array}{l}
123 \\
4738 \\
47
\end{array}\right)
$$

because they contain te same set is information.
Prob36

$$
\left|s_{n}\right|=n!
$$

Pf Follows by definition

$$
R S_{n}=\operatorname{Sym}(\{2, \cdots, n\})
$$

Def If f ad g are permatatius δ ton define fog to be to composition

$$
\begin{aligned}
& S_{\psi} \xrightarrow{g} \underset{\sim}{S} \xrightarrow{f} S_{0} \\
& s \mapsto g(s) \mapsto f(g s x) \\
& \text { ide. }(f \circ g)(s)=f(g(s))
\end{aligned}
$$

Prop37 If f and g are elements

$$
f, b:\{1, \cdots\} \rightarrow{ }_{\{1, \cdots\}} \text { of } S_{n}
$$

ten fog is also an element in S_{n}.
PA we need to check that fog is Ejective on

$$
\{1 ; n\}
$$

inactivity Need to check:

$$
x, y \in\{1, \cdots, n\}
$$

if $(f \circ g)(x)=(f \circ g)(y)$
ter $x=y$

To do this, assume

$$
\begin{array}{r}
(f \circ g)(x)=(f \circ g)(y) \\
11 \kappa \text { definitinu } \rightarrow 11 \\
f(g(x)) \quad f(g(y))
\end{array}
$$

Sinc f is injective

$$
g(x)=g(b)
$$

Since g is injective.

$$
x=y
$$

Sunjectivity Need to check:
siven $z \in\{1, \ldots, n\}$, tone exists $x \in\{1, \cdots, n\}$
s.t. $(f \circ g)(x)=z$.

Exampe $n=8$

$$
\begin{aligned}
& f=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
4 & 7 & 3 & 8 & 1 & 5 & 2 & 6
\end{array}\right) \\
& g=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 78 \\
6 & 3 & 1 & 8 & 7 & 2 & 5
\end{array}\right) \\
& f \circ g=?
\end{aligned}
$$

(1) $\stackrel{9}{\mapsto} 6 f_{\mapsto}(5)$
(2) $H 3+(3$
(3) $1+1 \rightarrow 4$
(4) $\rightarrow 8+(6$
(5) $H \rightarrow 7 H^{2}$
(6) $H 2 \mathrm{H} 7$
(3) $h 5 \rightarrow 1$
(8) H4 H (8)

$$
f o g=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
5 & 3 & 4 & 6 & 2 & 7 & 1 & 8
\end{array}\right)
$$

Prop 38 If f is un element of S_{n} then the inverse f^{-1} exists

RK f^{-1} is th $\operatorname{tancting} g$
s.t. $\quad f \circ g=g \circ f=1$

$$
\left(\begin{array}{cccc}
1 & 2 & 3 & \cdots \\
1 & 2 & 3 & \cdots
\end{array}\right)
$$

Prout Detine $g:\{1, \cdots, n\} \rightarrow\{1, \cdots\}$ as follows.

Gien $y \in\{1, \cdots, n\}$

$$
\begin{array}{r}
g(y)=\text { the unigne element } x \\
\text { in }\{1, \cdots, n\}
\end{array}
$$

$$
\text { st. } f(x)=y
$$

RK
x exists becanse f is surjective
x is unishe becuse f is injetive.
Then check
g is also bijective.
8

$$
\begin{aligned}
& f \circ g=1 \\
& g \circ f=1
\end{aligned}
$$

Example $f=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 7 & 3 & 8 & 1 & 5 \\ \hline\end{array}\right.$

$$
f^{-1}
$$

$f^{-1}(1)$ is to unique element

$$
\begin{aligned}
& x \in\{1, \cdots, 8\} \\
& \text { s.t. } f(x)=1
\end{aligned}
$$

What is this? The cxpmosicm of f above tells you that's 5 .

$$
\begin{gathered}
f^{-1}(2) \text { is } x \in\{1, \cdots .8\} \\
\text { s.t. } f(x)=2
\end{gathered}
$$

That's 7

$$
\begin{array}{lll}
& f^{-1} \\
1 & H & 5 \\
2 & \mapsto & 7 \\
3 & H & 3 \\
4 & \mapsto & 1 \\
5 & \mapsto & 6 \\
6 & \mapsto & 8 \\
7 & \mapsto & 2 \\
8 & \mapsto & 4
\end{array}
$$

$$
f^{-1}=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 78 \\
5 & 7 & 3 & 1 & 6 & 8 & 2 & 4
\end{array}\right)
$$

