Recap quiz

Consider 2-player Zero-sum gane Calin C(C2 C3 Scenarson C1 1 2 3 C2 -3 -2 -1 Call this payoff Matrix A = aij What is the expected payoff to Reservary/Colin it Rosemany plays mixed strategy $\underline{z} = (\underline{z}, \underline{z})$ 2=(-4, -1, -4) Colin plays Expected poyoff to Reservary ズイター シメシャノ + シメシャン + シメタメン - 0 $+\frac{1}{2}\times\frac{1}{4}\times(-3)+\frac{1}{2}\times\frac{1}{2}\times(-2)+\frac{1}{2}\times\frac{1}{4}\times(-1)$ Expected Payoft to Colin = - 0 = 0 What is the expected payoff to Rosemany if Reserving plays mixed strategy $x = (\frac{1}{4}, \frac{2}{4})$ Colin plays pure strategy (3 i.e. 2= (0,0,1)

 $\begin{aligned} & \text{expected payelf to Reserves} &= x^{T}A2 \\ &= \frac{1}{4} \times 1 \times 3 = (x^{T}A)_{3} \\ &+ \frac{2}{4} \times 1 \times -1 \end{aligned}$

then expected payoff to Reservery is $\underline{x}^T A \underline{y}$ Colin is $-\underline{x}^T A \underline{y}$ If Reservery plays mixed strategy $\underline{x} \in A(R)$ Colin plays pure strategy C_j equivolently $\underline{y} = (o_1,, o_1,, o_1,, o_1)$ $= e_j$ in early then expected payoff to Reservery is $(\underline{x}^T A)\underline{e}_j = (\underline{x}^T A)_j$. Intuitively, the security level for $\underline{x} \in A(R)$, is least expected payoff to Reservery if she plays \underline{x}_1 , i.e. $\min_{\underline{x}^T A \underline{y}}$ $\underline{y} \in A(C)$ Difficult to use this to compute security of \underline{x}	Recall Consider 2-player zero-sum game
$C = \{c_{1},, c_{k}\} \text{ for } c_{k} \text{ colins } \text{ strategies}$ $A = \alpha_{ij}$ If Reserved plays mixed strategy $\Xi = (\alpha_{1},, \alpha_{k}) \in \Delta(R)$ $Colin plays \Xi = (\alpha_{1},, \alpha_{k}) \in \Delta(C)$ then expected payoff to Reservery is $\Xi^{T}A = (\alpha_{1},, \alpha_{k}) \in \Delta(C)$ If Reserved plays mixed strategy $\Xi \in \Delta(R)$ $Colin is - \Xi^{T}A = (\alpha_{1},, \alpha_{k}) = (\alpha_{1},, $	with R= EVI,, VR3 set of Rosemany's strategies
If Rosemany plags mixed strategy $\mathcal{I} = (\mathfrak{I}_{1}, \dots, \mathfrak{I}_{k}) \in \Delta(\mathbb{R})$ (olin plags $\mathcal{I} = (\mathfrak{I}_{1}, \dots, \mathfrak{I}_{k}) \in \Delta(\mathbb{C})$ then expected payoff to Rosemany is $\mathcal{I}^{T} A \mathcal{I}$ Colin is $-\mathcal{I}^{T} A \mathcal{I}$ If Rosemany plags mixed strategy $\mathcal{I} \in \Delta(\mathbb{R})$ (olin plags pure strategy \mathcal{I}_{j} equivalently $\mathcal{I} = (\mathfrak{I}_{j}, \dots, \mathfrak{I}_{j}, \mathfrak{I}$	C = ECISTY (LZ Set of Colins Strategies
then expected payoff to Reservery is $\underline{x}^T A \underline{y}$ Colin is $-\underline{x}^T A \underline{y}$ If Reservery plays mixed strategy $\underline{x} \in A(R)$ Colin plays pure strategy C_j equivolently $\underline{y} = (o_1,, o_1,, o_1,, o_1)$ $= e_j$ in early then expected payoff to Reservery is $(\underline{x}^T A)\underline{e}_j = (\underline{x}^T A)_j$. Intuitively, the security level for $\underline{x} \in A(R)$, is least expected payoff to Reservery if she plays \underline{x}_1 , i.e. $\min_{\underline{x}^T A \underline{y}}$ $\underline{y} \in A(C)$ Difficult to use this to compute security of \underline{x}	$A = Q_{ij}$
then expected payoff to Reservery is $\underline{x}^T A \underline{y}$ Colin is $-\underline{x}^T A \underline{y}$ If Reservery plays mixed strategy $\underline{z} \in A(R)$ Colin plays pure strategy C_j equivolently $\underline{y} = (o_1,, o_1,, o_1,, o_1)$ $= e_j$ it entry then expected payoff to Reservery is $(\underline{x}^T A)\underline{e}_j = (\underline{x}^T A)_j$; Intuitively, the security level for $\underline{x} \in A(R)$ is least expected payoff to Rosenvery if she plays \underline{x}_1 i.e. $\min_{\underline{x}^T A \underline{y}}$ $\underline{y} \in A(C)$ Difficult to use this to compute security of \underline{x}	If Reserving plays mixed strategy Z = (x1,, xL) EAIR)
Colin is - Z ^T AY If Roseman plays mixed strategy Z ∈ A(R) Colin plays pure strategy C; equivolently y = (0,,0,1,0,,0) Z = 5 t it entry then expected payoff to Rosemany is (XTA)e; = (XTA); Intuitively, the security level for X ∈ A(R), is least expected payoff to Rosemany if she plays Z, i.e. min X ^T AY y ∈ A(C) Difficult to use this to compute security of Z	$(olin plays \underline{J}^{-}(\underline{y}_{1}, \underline{y}_{k}) \in \underline{I}(\underline{c})$
Colin is - Z ^T AY If Roseman plays mixed strategy Z ∈ A(R) Colin plays pure strategy C; equivolently y = (0,,0,1,0,,0) = e; t it entry then expected payoff to Rosemany is (XTA)e; = (XTA); Intuitively, the security level for X ∈ A(R), is least expected payoff to Rosemany if she plays Z, i.e. min XTAY y∈A(C) Difficult to use this to compute security of Z	then expected payoff to Rosennary is zTAZ
Colin plags pure strategy C_j equivalently $\underline{y} = (o_1,, o_1, o_2,, o_1)$ $= e_j$ $(\underline{x}, \underline{y}, \underline{y})$ then expected payoff to Reservery is $(\underline{x}, \underline{x}, \underline{x}, \underline{x}) = (\underline{x}, \underline{x}, \underline{x})$ intuitively, the security level for $\underline{x} \in A(\underline{R})$, is least expected payoff to Reservery if she plays \underline{x} , i.e. min $\underline{x}^T A \underline{y}$ $\underline{y} \in A(\underline{c})$ Difficult to use this to compute security of \underline{x}	Colin is -ZTAZ
Then expected payoff to Reservant is $(\underline{x}^T A)\underline{e}_j = (\underline{x}^T A)_j$ Intuitively, the security level for $\underline{x} \in A(\underline{r})$, is least expected payoff to Reservant if she plays \underline{x} , i.e. $\min \ \underline{x}^T A \ \underline{y}$ $\underline{y} \in A(\underline{c})$ Difficult to use this to compute security of \underline{x}	Colin plays pure strategy cj
Then expected payoff to Reservant is $(\underline{x}^T A)\underline{e}_j = (\underline{x}^T A)_j$ Intuitively, the security level for $\underline{x} \in A(\underline{r})$, is least expected payoff to Reservant if she plays \underline{x} , i.e. $\min \ \underline{x}^T A \ \underline{y}$ $\underline{y} \in A(\underline{c})$ Difficult to use this to compute security of \underline{x}	equivolently <u>y</u> = (0,,0,1,0,,) = e; timently
min ETAY YEACC) Difficult to use this to compute security of 2	Then expected payoff to Koseman is (xTA)=; = (xTA);
min ETAY YEACC) Difficult to use this to compute security of 2	Intuitively, the security level for ZEA(R), 5 least expected payoff to Rosennary if she
Difficult to use this to compute security of 2	
Difficult to use this to compute security of 2	$\frac{\gamma}{2} e A(c)$
V	

Lem With previous setup
(1) For any fixed
$$x \in A(P)$$

min $x^{T}A_{2} = \min(x^{T}A)_{j}$
 $y \in A(C)$
(2) For any fixed $y \in A(C)$
max $x^{T}A_{2} = \max(A_{2})_{i}$
 $x \in A(P)$
 Pf (amitted)
 $\frac{Detn}{Vith}$ previous setup
The security level for Resemond's mixed strategy
 $x \in A(P)$ is
min $(x^{T}A)_{j} = \min(\sum_{i=1}^{k} x_{i}a_{ij})$
the security level for Colin's mixed strategy
 $y \in A(C)$ is
 $\max(x^{T}A)_{i} = \max(\sum_{i=1}^{k} a_{ij}y_{i})$
the security level for Colin's mixed strategy
 $y \in A(C)$ is
 $\max(A_{2})_{i} = \max(\sum_{i=1}^{k} a_{ij}y_{i})$

 $\frac{Example}{\sum_{i=1}^{\infty} \frac{h}{h} \frac{t}{t}} = \frac{1}{1} = \frac{$

Ans: expected payoff to Recemp if colin plays h is

$$\frac{1}{3} \times 1 + \frac{3}{3} \times (-1) = -\frac{1}{3}$$

expected payoff to Reservang if Colin plays t is
 $\frac{1}{3} \times (-1) + \frac{3}{3} \times 1 = \frac{1}{3}$

security level of Γ is $\min(-\frac{1}{3}, \frac{1}{3}) = -\frac{1}{3}$.

Recall: What is pure Nash equilibrium

$$\begin{array}{c}
C_i \quad C_2 \quad \cdots \quad C_j \quad \cdots \quad C_k \\
\hline
V_1 \\
\Gamma_k \\
\vdots \\
\Gamma_k
\end{array}$$

In words

(r, c, c) is a pure Nach equilibrium if
(z, 2) is a mixed Nach equilibrium if
Resemany has no incentive to change her strategy ri
assuming Colin stags at
$$c_j$$
 and
Colin has no incentive to change his strategy c_j
assuming Roremay stags at r_i'
expected payoff is $zTAy$
Deta Consider a 2-player zero-sum game
with payoff matrix A.
(\underline{z} , \underline{y}) with $\underline{z} \in \Delta(R)$ and $\underline{z} \in \Delta(C)$ is a
(mixed) Nach equilibrium if
 $\underline{z}^TA\underline{y} \ge \underline{z}^TA\underline{y} \quad \forall \underline{z}' \in \Delta(R)$
and $\underline{z}^TA\underline{y} \le \underline{z}A\underline{y}' \quad \forall \underline{z}' \in \Delta(C)$

Following theorem makes it easier to check it $(\underline{z}, \underline{z})$ is a (mixed) Nash equilibrium. <u>This</u> Given 2-player, zero-sum gane with payoff matrix A, let $\underline{z} \in A(\underline{p})$ and $\underline{z} \in A(\underline{c})$ be mixed strategies, and let $u(\underline{z})$ be security level for $\underline{z} = \min(\underline{x}^T A)_j$ $u(\underline{z})$ be security level for $\underline{z} = \min(\underline{x}^T A)_j$ $u(\underline{z})$ be security level for $\underline{z} = \min(\underline{x}^T A)_j$ $u(\underline{z}) = u(\underline{z})$.

Example

 $\frac{c_{1}}{r_{1}} \begin{pmatrix} c_{1} \\ c_{2} \\ c_{3} \\ c_{4} \\ c_{2} \\ c_{3} \\ c_{4} \\ c_{4} \\ c_{2} \\ c_{3} \\ c_{4} \\ c_{2} \\ c_{3} \\ c_{4} \\ c_{2} \\ c_{3} \\ c_{2} \\ c_{3} \\ c_{2} \\ c_{3} \\ c_$

security for 9: payoff if Reserving plays r_1 r_1 r_2 r_1 r_2 r_3 $r_4 \times 1 + \frac{3}{4} \times 3 = \frac{5}{2}$ $r_4 \times 4 + \frac{3}{4} \times 2 = \frac{5}{2}$ security of $2 = max(\frac{5}{2}, \frac{5}{2}) = \frac{5}{2}$

(Z, 2) is a (mixed) Nash equilibrium by theorem above since recurity levels of 2 and 2 are equal.

Inm Given 2-player, zero-sum gane with payoff matrix A, let zEA(P) and ZEA(C) be mixed strategies, and let u(z) be security level for z = min (xTA); u(2) be security level for 2 = max (A2); Then (2,2) is a Nash equilibrium if and only if $u(\underline{x}) = u(\underline{y}).$ $P = u(\underline{x}) = \min \underline{x}^{T} A \underline{y}' \leq \underline{x}^{T} A \underline{y} \leq \max \underline{x}^{T} A \underline{y} = u(\underline{y})$ $1 = \underline{y}' \in A(c)$ defn defndefn + (emma + lemma If u(z) = u(z) then I and I had with equality (2) with equality says Rosemany has no incentive to change from x () with equality says Colin has no incentive to Change from 2 Hence (Z, 2) is a Nash equilibrium. If (2,2) is (mixed) Nash equilibrium then Rosemay has no incentive to change (i.e. 2) holds with equality) Colin has no inentive to change live. O holds with equality) So $Y(\mathcal{L}) = V(\mathcal{D})$

Example 11.1. Give a linear program wixed strategy for the zero-sum ga	-	n for finding the row player's optimal with the following payoff matrix:
0, 0		Colin
	1	2
$\sum_{i=1}^{\infty} \overline{1}$	2	-3
	-3	3 4
Some and a second secon	4	$ \begin{array}{c} -3\\ 3 & 4\\ -5 \end{array} $

Let $\mathcal{Z} = (x_1, x_2, x_3)$ be a mixed strategy

cptimal mixed strategy Means mixed strategy With best security level For Rosenay this is the mixed strategy with highest security and for Colin, the lowest.

for Reservary.
Security of
$$\mathcal{I}$$
: expected payoth if Colin plays 1
 $= 2\alpha_1 - 3\alpha_2 + 3\alpha_3$
expected payoff if Colin plays 2
 $= -3\alpha_1 + 4\alpha_2 - 5\alpha_3$

security level of
$$\underline{x} = \min(2x_1 - 3x_2 + 3x_3) - 3x_1 + 4x_2 - 5x_3)$$

Want to find \underline{x} with maximum security level

Maximise
$$\min(2x_1 - 3x_2 + 3x_3) - 3x_1 + 4x_2 - 5x_3)$$

Subject to $x_1 + x_2 + x_3 = 1$
 $x_{1,1}x_{2,1}x_{3,2} = 0$

Equivalent LP (see end of week 8)

Maximil Z
Sub to
$$Z \le 2x_1 - 3x_2 + 3x_3$$

 $2 \le -3x_1 + 4x_2 - 5x_3$
 $x_1 + x_2 + x_3 = 1$
 $x_{1,3}x_2, x_3 = 0$, Z unrestricted.

optimal solution (x1,x2,x3,2) to this LP gives the mixed strategy (x1,x2,x3) with highest security level for Rosemany, and 2 gives security level of that mixed strategy

Write up to find Colin's mixed strategy with best (lowest) security level,

Example 11.1. Give a linear program for finding the row player's optimal mixed strategy for the zero-sum game with the following payoff matrix:

λeV(c)

Colin: let (5, 5, be mixed strategy for ColM.

expected payoff it Reservant plays 1: 201-302 2: -351+452 3: 451-552

secrity level for $\mathcal{I} = \max(23_1-342, -33_1+442, 43_1-572)$ $\underline{9}$ with best (lowest) security given by $\min(\min 2 \max(23_1-342, -33_1+442, 43_1-572))$

Rosemay's and Colin's LPs turn out to be dual at each other,

In general if Rosemany has strategies
$$R = \{r_{1,j}, ..., r_{n}\}$$

Colin $C = \{c_{1,j}, ..., c_{m}\}$
 $A = a_{ij}$ is payoff matrix
If Rosemany plays $\underline{x} = (x_{1,j}, ..., x_{n}) \in A(R)$
and Colin plays C_{j}
Expected part to Rosemany $= a_{ij}x_{1} + a_{2j}x_{1} + ... + a_{nj}x_{n}$
Security of \underline{x} is $u(\underline{x}) = \min(a_{ij}x_{1} + a_{2j}x_{2} + ... + a_{nj}x_{n})$
 $Security level for Rosemany$
 $\max(u(\underline{x}) = \max(\min_{c_{j}\in C} a_{ij}x_{1} + a_{2j}x_{2} + ... + a_{nj}x_{n})$
 $i.e.$ Solve $\max(\min_{c_{j}\in C} a_{ij}x_{1} + a_{2j}x_{2} + ... + a_{nj}x_{n})$
 $i.e.$ Solve $\max(\min_{c_{j}\in C} a_{ij}x_{1} + a_{2j}x_{2} + ... + a_{nj}x_{n})$
 $Sub to x_{1} + x_{2} + ... + x_{n} = 1$
 $x_{1,j}x_{2,j} - x_{n} \geq 0$

Equivalent LP is

maximike Z subto $2 \le Q_{1j}x_1 + Q_{2j}x_2 + \dots + Q_{nj}x_j$ $j=1,\dots,m$ $x_1 + x_2 + \dots + x_n = 1$ $x_{1,1}x_{2,1} + \dots + x_n \ge 0$, Z unvestricted, n+1 variables m+1 constraints. Con similarly check that best security level for Colin ghen by following CP

minimize t
sub to
$$t = 2 a_{i_1} y_{i_2} + q_{i_2} y_{i_2} + \dots + a_{i_m} y_{m} = 1, \dots, n$$

 $y_{i_1} y_{i_2} + \dots + y_{m} = 1$
 $y_{i_1} y_{i_1} \dots , y_{m} = 20, t$ unrestricted,
 $m + 1$ variables
 $n + 1$ constraints

Pr<u>cposition</u> Reservary's and Colin's LPs for finding best security levels are dual to each other.

Suppose
$$(x_{1},..,x_{n},z)$$
 is optimal solution to
 $Pcsemany's LP$
 $(y_{1},...,y_{m},t)$ is optimal solution to
 $Colin's Lp$
ther $(x_{1},...,x_{n})$ is mixed strategy for Pcsemany
with best searily level $z = u(z)$
y

Strong duality theorem says Z = t i.e. u(z) = u(z)=> (by earlier thm) (z, z) is a Nash equilibrium Have proved

Thm Every 2-player zero-sum gave has a (mixed) Nash equilibrium.

Remarks

- For 2-player zero-sum games, have seen that We sometimes have no pure Nash equilibrium, but always have a mixed Nach equilibrium i.e. con always get Stability if we allow random strategies. - In fact, John Nach shared that any 2-player game (not necessarily zero-sum) has a mixed Nach equilibrium. We will not prove this, but will look again briefly at general 2-player games next week.