QUEEN MARY UNIVERSITY OF LONDON

MTH5120
Statistical Modelling I
Solution to Exercise Sheet 11

1. We use the Bridge.txt dataset available on QMPlus, where information from 45 bridge projects are compiled. The response and predictor variables are as follows:

- Y : Time is the design time in person-days;
- X_{1} : DArea is the deck area of bridge (000 sq ft);
- X_{2} : CCost is the construction cost ($\$ 000$);
- X_{3} : Dwgs is the number of structural drawings;
- X_{4} : Length is the length of bridge (ft);
- X_{5} : Spans is the number of spans.

Take the logarithm transformation of all the variables.
(a) As in Coursework 10, before running the model, we need to take the logarithm of all the variables considered:

```
> data <- read.table("bridge.txt", header=TRUE)
> attach(data)
> Y<- log(data[,2])
> X1 <- log(data[,3])
> X2 <- log(data[,4])
> X3 <- log(data[,5])
> X4 <- log(data[,6])
> X5 <- log(data[,7])
```

Then we define the model with all the explanatory variables and we run the backward elimination procedure:

```
> m1 <- lm(Y ~ X1 + X2 + X3 + X4 + X5)
> reduced.model <- step(m1, direction="backward")
Start: AIC=-98.71
Y ~ X1 + X2 + X3 + X4 + X5
    Df Sum of Sq RSS AIC
- X4 1 0.00607 3.8497 -100.640
- X1 1 0.01278 3.8564 -100.562
<none> 3.8436 -98.711
- X2 1 0.18162 4.0252 -98.634
- X5 1 0.26616 4.1098 -97.698
- X3 1 1.45358 5.2972 -86.277
Step: AIC=-100.64
```

```
Y ~ X1 + X2 + X3 + X5
    Df Sum of Sq RSS AIC
- X1 1 0.01958 3.8693 -102.412
<none> 3.8497 -100.640
- X2 1 0.18064 4.0303 -100.577
- X5 1 0.31501 4.1647 -99.101
- X3 1 1.44946 5.2991 -88.260
Step: AIC=-102.41
Y ~ X2 + X3 + X5
    Df Sum of Sq RSS AIC
<none> 3.8693-102.412
- X2 1 0.17960 4.0488 -102.370
- X5 1 0.29656 4.1658 -101.089
- X3 1 1.44544 5.3147 -90.128
```

Thus, backward elimination based on AIC chooses the model with the three predictors X_{2}, X_{3} and X_{5}, which are the logarithm of the construction cost; of the number of structural drawings and of the number of spans.
Thus in conclusion the best model, called M1, is

$$
Y=\beta_{0}+\beta_{1} X_{3}+\beta_{2} X_{5}+\beta_{3} X_{2}+\varepsilon
$$

where the variables are taken in logarithm. On the other hand, the second best model, called M2, is

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\beta_{4} X_{5}+\varepsilon
$$

(b) Starting from M1, we need to define the model

```
> modfinal <- lm(Y ~ X3 + X5 + X2)
```

Then, we can find the leverage values and the Cook's distance values:

> hatvalues (modfinal)				
1	2	3	4	5
0.05597217	0.09329413	0.10592688	0.04644378	0.04758423
6	7	8	9	10
0.06748107	0.09368962	0.02250127	0.03868009	0.13866675
11	12	13	14	15
0.13038134	0.04398404	0.04844501	0.07297180	0.07297180
16	17	18	19	20
0.04894325	0.13583933	0.04588027	0.04634131	0.06052667
21	22	23	24	25
0.05170357	0.25375049	0.04590607	0.10698551	0.14842192
26	27	28	29	30

```
0.09956467 0.09196830 0.13298453 0.13298453 0.04567849
    31 32 33 34 35
0.07166907 0.09749309 0.16660874 0.13446120 0.05356590
    36 37 38 40
0.05557333 0.06605840 0.19186747 0.17652561 0.04481103
0.12231997 0.04459390 0.07533738 0.10159530 0.07104674
> i=(1:45)
> plot(i,hatvalues(modfinal),main="Leverage values, Bridge")
> plot(i,cooks.distance(modfinal),main="Cook's distance, Bridge")
```

Figure 1.1 shows the leverage values (left) and the Cook's distance values (right) for the model with three explanatory variables (X_{3}, X_{5} and X_{2}). In our case, we

Figure 1.1: Plot of leverage values (left) and Cook's distance values (right) for the model with three explanatory variables.
have the number of observations, n, equal to 45 and number of regression values, p, equal to 4 . Thus, a leverage values is larger if $2 p / n$ and very large if $3 p / n$ and in our case it means:

$$
\frac{2 p}{n}=\frac{2 \times 4}{45}=0.178, \quad \frac{3 p}{n}=\frac{3 \times 4}{45}=0.267
$$

Looking at Figure 1.1, we have that there is one values very large related to observation (25) and a few bigger than the large value of 0.178 (the observation 38 and 39). Moving to the Cook's distance, the critical value is obtained as

```
> qf(p=0.50,df1=4,df2=41)
[1] 0.8532109
```

The right panel of Figure 1.1 shows the Cook's distance for all the observations and we can see that the highest Cook's distance for observation 22 is smaller than that, thus it is nevertheless more influential than any other states.

Moving to the second best model, M2, we have

```
> secmodfinal <- lm(Y ~ X1 + X2 + X3 + X5)
> summary(secmodfinal)
Call:
lm(formula = Y ~ X1 + X2 + X3 + X5)
Residuals:
\begin{tabular}{rrrrr} 
Min & 12 & Median & 32 & Max \\
-0.67135 & -0.17582 & -0.02815 & 0.24654 & 0.67035
\end{tabular}
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.19011 0.47854 4.577 4.51e-05 ***
X1 -0.05431 0.12041 -0.451 0.65441
X2 0.18389 0.13422 1.370 0.17832
X3 0.85724 0.22089 3.881 0.00038 ***
X5 0.21252 0.11747 1.809 0.07795 .
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ' ' 1
Residual standard error: 0.3102 on 40 degrees of freedom
Multiple R-squared: 0.7758,Adjusted R-squared: 0.7534
F-statistic: 34.61 on 4 and 40 DF, p-value: 1.694e-12
```

From this model, we can compute the leverage values:

> hatvalues (secmodfinal)				
1	2	3	4	5
0.06785119	0.21042799	0.11005482	0.05709607	0.12333525
6	7	8	9	10
0.09640295	0.09682564	0.02801548	0.11019164	0.19947899
11	12	13	14	15
0.13043430	0.04418682	0.04894538	0.09391220	0.09391220
16	17	18	19	20
0.05737107	0.15814656	0.10713544	0.07717193	0.06156026
21	22	23	24	25
0.08045804	0.28030341	0.05045836	0.11249258	0.19784606
26	27	28	29	30
0.10329039	0.16933385	0.14376263	0.14376263	0.07491489
31	32	33	34	35
0.07195192	0.11966058	0.16663753	0.13861098	0.05683629
36	37	38	39	40
0.05559312	0.06635602	0.19336401	0.19848587	0.05532075
41	42	43	44	45
0.15725609	0.04466579	0.11554178	0.14773888	0.08290138

In this case, the number of observations does not change, thus n is equal to 45 , while the number of regressions moves to 5 . The leverage values is larger if ($2 \times$ $5) / 45=0.223$ and very large if $(3 \times 5) / 45=0.334$. Figure 1.2 shows the leverage values (left) and the Cook's distance values (right).

Figure 1.2: Plot of leverage values (left) and Cook's distance values (right) for the model with four explanatory variables.

From Figure 1.2, we see that the only observation with a very large value is related to observation 22, while for the Cook's distance, the critical value is 0.885 and the highest Cook's distance is for observation 22 but it is not greater than the critical value.

2. Coursework component

When fitting the model

$$
E\left[Y_{i}\right]=\beta_{0}+\beta_{1} x_{1, i}+\beta_{2} x_{2, i}
$$

to a set of $n=5$ observations, the following results were obtained using the general linear model notation:

$$
\left(\boldsymbol{X}^{t} \boldsymbol{X}\right)^{-1}=\left(\begin{array}{ccc}
209.32 & -3.82 & -0.71 \\
-3.82 & 0.069 & 0.013 \\
-0.71 & 0.013 & 0.002
\end{array}\right)
$$

with variables:

Variable	1	2	3	4	5
Y	92.5	94.9	89.3	94.1	98.9
X_{1}	50.9	54.1	47.3	45.1	37.6
X_{2}	20.8	16.9	25.2	49.7	95.2

(a) In order to find the leverage values, we need to define \boldsymbol{H}, which is

$$
\boldsymbol{H}=\boldsymbol{X}\left(\boldsymbol{X}^{t} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{t}=\left(\begin{array}{ccccc}
0.302 & 0.336 & 0.263 & 0.158 & -0.059 \\
0.336 & 0.805 & -0.191 & 0.080 & -0.030 \\
0.263 & -0.191 & 0.775 & 0.245 & -0.092 \\
0.158 & 0.080 & 0.245 & 0.227 & 0.290 \\
-0.059 & -0.030 & -0.092 & 0.290 & 0.891
\end{array}\right)
$$

Then we need to select the diagonal elements of this matrix and see if they are smaller of the threshold values. In our case the diagonal elements are

$$
\left(\begin{array}{lllll}
0.302 & 0.805 & 0.775 & 0.227 & 0.891
\end{array}\right)
$$

So a leverage values is large if it bigger than $(2 \times 3) / 5$ and very large if it is bigger than $(3 \times 3) / 5$. In our case, no values are bigger than the thresholds.
(b) Let us consider the problem

$$
E\left[Y_{i}\right]=\beta_{0}+\beta_{1} x_{1, i}
$$

with Y and X_{1} defined as above with the exception of $x_{1,5}$, which changes from 37.6 to 20 . Thus the matrix $\left(\boldsymbol{X}^{t} \boldsymbol{X}\right)^{-1}$ becomes

$$
\left(\boldsymbol{X}^{t} \boldsymbol{X}\right)^{-1}=\left(\begin{array}{cc}
2.77 & -0.06 \\
-0.06 & 0.001
\end{array}\right)
$$

In this case we need to compute the same matrix \boldsymbol{H} as before

$$
\boldsymbol{H}=\boldsymbol{X}\left(\boldsymbol{X}^{t} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{t}=\left(\begin{array}{ccccc}
0.275 & 0.307 & 0.238 & 0.216 & -0.037 \\
0.307 & 0.353 & 0.255 & 0.223 & -0.139 \\
0.238 & 0.255 & 0.220 & 0.208 & 0.078 \\
0.216 & 0.223 & 0.208 & 0.204 & 0.148 \\
-0.037 & -0.139 & 0.078 & 0.148 & 0.949
\end{array}\right)
$$

with diagonal elements equal to

$$
\left(\begin{array}{lllll}
0.275 & 0.353 & 0.220 & 0.204 & 0.949
\end{array}\right)
$$

In this case, the threshold values change: the leverage is large if is bigger than $2 \times 2 / 5$ and very large if is bigger than $3 \times 2 / 5$ and in our case the last observation is bigger than the threshold value.

