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Practical in R – Output

In this practical, we will work with the dataset on presidential elections in US in year 2000
(on the https://electionlab.mit.edu/data is possible to found other data). We will look at how
to select the best model by using the AIC and other measures.

In the file USElection.csv, we have different variables of interest, such as the fraction of the
state’s total counted vote for George W. Bush, which is the response variable. In the file, we
find the following eleven columns for each of the US states:

• Y = %Bush which is the percentage of votes for G.W. Bush;

• X1 = UnEmpR which is the unemployment rate;

• X2 = Pop is the total population of the state;

• X3 = %Male is the percentage of male;

• X4 = %Pop > 65 is the percentage of population older than 65;

• X5 = %NonMetr is the percentage of rural (nonmetro) population;

• X6 = %PopPov is the percentage of population below the poverty level;

• X7 = NuHouse is the total number of households;

• X8 = %Inc > 50 is the percentage of house income bigger than $50000;

• X9 = %Inc > 75 is the percentage of house income bigger than $75000;

• X10 = %Inc > 100 is the percentage of house income bigger than $100000.

Note to find the VIF values, we should use the command vif(model) and we should install
and load the correct library:

> install.packages("car")
> library(car)

1. First of all we need to load the data in R:
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> data <- read.csv("USElection.csv")
>
> Y<- data[,1]
> X1 <- data[,2]
> X2 <- data[,3]
> X3 <- data[,4]
> X4 <- data[,5]
> X5 <- data[,6]
> X6 <- data[,7]
> X7 <- data[,8]
> X8 <- data[,9]
> X9 <- data[,10]
> X10 <- data[,11]

After defining it, we fit the full model for the response variable by including all the
explanatory variables

> mody <- lm(Y ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X10)

Further details are related to the computation of the VIF, which uses the following R
command:

> vif(mody)
X1 X2 X3 X4 X5 X6

2.120386 22.175187 2.820395 1.775724 2.399138 4.690190
X7 X8 X9 X10
21.735725 38.328787 69.432943 22.556284

Looking at the VIF values, we have different values larger than 10, f.e X2, X7, X8, X9

and X10. Thus, there are problems with multicollinearity and it is likely to have inflated
the standard errors and this may be why so many variables appear not significant.

2. In the first case, we define the full model with all the explanatory variables and then use
the backwards elimination procedure:

> reduced.model <- step(mody, direction="backward")
Start: AIC=200.11
Y ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X10

Df Sum of Sq RSS AIC
- X2 1 0.29 1676.4 198.12
- X8 1 1.59 1677.7 198.16
- X6 1 4.57 1680.7 198.25
- X7 1 5.31 1681.4 198.27
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- X9 1 16.24 1692.4 198.60
<none> 1676.1 200.11
- X3 1 78.30 1754.4 200.44
- X1 1 131.55 1807.7 201.97
- X10 1 136.59 1812.7 202.11
- X4 1 192.90 1869.0 203.67
- X5 1 424.86 2101.0 209.63

Step: AIC=198.12
Y ~ X1 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X10

Df Sum of Sq RSS AIC
- X8 1 1.46 1677.9 196.17
- X6 1 4.89 1681.3 196.27
- X9 1 15.96 1692.4 196.60
<none> 1676.4 198.12
- X3 1 83.52 1759.9 198.60
- X7 1 118.35 1794.8 199.60
- X1 1 131.64 1808.1 199.98
- X10 1 137.44 1813.9 200.14
- X4 1 192.72 1869.1 201.67
- X5 1 426.96 2103.4 207.69

Step: AIC=196.17
Y ~ X1 + X3 + X4 + X5 + X6 + X7 + X9 + X10

Df Sum of Sq RSS AIC
- X6 1 10.18 1688.0 194.47
- X9 1 25.92 1703.8 194.95
<none> 1677.9 196.17
- X3 1 105.99 1783.9 197.29
- X7 1 116.98 1794.9 197.60
- X1 1 134.21 1812.1 198.09
- X10 1 137.45 1815.3 198.18
- X4 1 191.44 1869.3 199.68
- X5 1 463.32 2141.2 206.60

Step: AIC=194.47
Y ~ X1 + X3 + X4 + X5 + X7 + X9 + X10

Df Sum of Sq RSS AIC
- X9 1 16.13 1704.2 192.96
<none> 1688.0 194.47
- X3 1 99.83 1787.9 195.41
- X7 1 128.20 1816.2 196.21
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- X10 1 129.72 1817.8 196.25
- X1 1 159.35 1847.4 197.07
- X4 1 206.24 1894.3 198.35
- X5 1 487.54 2175.6 205.41

Step: AIC=192.96
Y ~ X1 + X3 + X4 + X5 + X7 + X10

Df Sum of Sq RSS AIC
<none> 1704.2 192.96
- X7 1 121.90 1826.1 194.48
- X3 1 123.55 1827.7 194.53
- X1 1 186.93 1891.1 196.27
- X4 1 205.60 1909.8 196.77
- X5 1 472.51 2176.7 203.44
- X10 1 658.58 2362.8 207.62

Thus in this case, the best model is the one that includes X1; X3; X4; X5; X7 and X10

with an AIC equal to 192.96.

On the other hand, we define the null model, which is the model with only the intercept
and then we apply the forward fit model:

> modyn <- lm(Y ~ 1)
> aic.forward.model <- step(modyn, scope=~X1 + X2 + X3 + X4 + X5 +
X6 + X7 + X8 + X9 + X10, direction="forward")
Start: AIC=239.89
Y ~ 1

Df Sum of Sq RSS AIC
+ X10 1 2165.90 3245.5 215.81
+ X5 1 1919.41 3492.0 219.55
+ X9 1 1822.81 3588.6 220.94
+ X8 1 1555.76 3855.7 224.60
+ X3 1 1523.81 3887.6 225.02
+ X4 1 232.61 5178.8 239.65
<none> 5411.4 239.89
+ X2 1 107.39 5304.0 240.86
+ X7 1 66.31 5345.1 241.26
+ X1 1 58.66 5352.8 241.33
+ X6 1 0.36 5411.1 241.88

Step: AIC=215.81
Y ~ X10

Df Sum of Sq RSS AIC
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+ X3 1 874.89 2370.6 201.79
+ X4 1 615.32 2630.2 207.09
+ X5 1 539.36 2706.2 208.54
+ X6 1 148.70 3096.8 215.42
<none> 3245.5 215.81
+ X9 1 84.27 3161.3 216.47
+ X8 1 71.54 3174.0 216.68
+ X1 1 30.97 3214.6 217.32
+ X7 1 8.49 3237.0 217.68
+ X2 1 5.26 3240.3 217.73

Step: AIC=201.79
Y ~ X10 + X3

Df Sum of Sq RSS AIC
+ X5 1 274.362 2096.3 197.52
+ X4 1 91.232 2279.4 201.79
<none> 2370.6 201.79
+ X1 1 44.884 2325.8 202.82
+ X8 1 20.492 2350.1 203.35
+ X9 1 6.968 2363.7 203.64
+ X6 1 0.515 2370.1 203.78
+ X2 1 0.426 2370.2 203.78
+ X7 1 0.087 2370.6 203.79

Step: AIC=197.52
Y ~ X10 + X3 + X5

Df Sum of Sq RSS AIC
+ X4 1 117.355 1978.9 196.58
+ X7 1 93.620 2002.7 197.19
+ X2 1 82.674 2013.6 197.47
<none> 2096.3 197.52
+ X1 1 68.807 2027.5 197.82
+ X9 1 23.099 2073.2 198.96
+ X8 1 17.487 2078.8 199.09
+ X6 1 9.085 2087.2 199.30

Step: AIC=196.58
Y ~ X10 + X3 + X5 + X4

Df Sum of Sq RSS AIC
+ X1 1 152.833 1826.1 194.48
+ X7 1 87.804 1891.1 196.27
+ X2 1 78.533 1900.4 196.52
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<none> 1978.9 196.58
+ X6 1 42.094 1936.8 197.49
+ X9 1 31.527 1947.4 197.76
+ X8 1 30.767 1948.2 197.78

Step: AIC=194.48
Y ~ X10 + X3 + X5 + X4 + X1

Df Sum of Sq RSS AIC
+ X7 1 121.902 1704.2 192.96
+ X2 1 115.359 1710.7 193.16
<none> 1826.1 194.48
+ X9 1 9.835 1816.2 196.21
+ X6 1 5.217 1820.9 196.34
+ X8 1 2.076 1824.0 196.43

Step: AIC=192.96
Y ~ X10 + X3 + X5 + X4 + X1 + X7

Df Sum of Sq RSS AIC
<none> 1704.2 192.96
+ X9 1 16.1324 1688.0 194.47
+ X8 1 4.5332 1699.7 194.82
+ X6 1 0.3919 1703.8 194.95
+ X2 1 0.0756 1704.1 194.96

Also in this case, we arrive at the same best model as before, thus the model that in-
cludes X10; X3; X5; X4; X1 and X7 with an AIC equal to 192.96.

3. As stated in the previous point, we run the linear regression with the following explana-
tory variables: X10; X3; X5; X4; X1 and X7. Thus in this case, the percentage of house
income bigger than $100000; of male; of rural population; of population older than
65 and the unemployment rate and the total number of households are the important
variables in the linear regression.

We run the usual linear regression model and the summary states:

> modfinal <- lm(Y ~ X10 + X3 + X5 + X4 + X1 + X7)
> summary(modfinal)

Call:
lm(formula = Y ~ X10 + X3 + X5 + X4 + X1 + X7)

Residuals:
Min 1Q Median 3Q Max

-16.369 -4.045 1.078 3.446 10.017
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.929e+01 7.535e+01 -0.654 0.516406
X10 -2.495e+00 6.050e-01 -4.124 0.000163 ***
X3 2.532e+00 1.418e+00 1.786 0.080983 .
X5 2.071e-01 5.931e-02 3.493 0.001102 **
X4 -1.416e+00 6.145e-01 -2.304 0.026006 *
X1 -2.122e+00 9.658e-01 -2.197 0.033340 *
X7 8.879e-07 5.005e-07 1.774 0.082970 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.223 on 44 degrees of freedom
Multiple R-squared: 0.6851,Adjusted R-squared: 0.6421
F-statistic: 15.95 on 6 and 44 DF, p-value: 1.231e-09

The variables related to X3 and X7 are statistically significant, but only at the 10%
significant level. Looking at the overall regression, thus at statistic F, we have that the
overall regression is highly significant, with value equal to 15.95 and p-value really
small. Moving to the adjusted R2 it has values of 64.21%, which is bigger than the
adjusted R2 of the model with all the explanatory variables and thus the new model is
better than the full model.

> anova(modfinal)
Analysis of Variance Table

Response: Y
Df Sum Sq Mean Sq F value Pr(>F)

X10 1 2165.90 2165.90 55.9208 2.292e-09 ***
X3 1 874.89 874.89 22.5886 2.172e-05 ***
X5 1 274.36 274.36 7.0837 0.01082 *
X4 1 117.36 117.36 3.0300 0.08873 .
X1 1 152.83 152.83 3.9460 0.05323 .
X7 1 121.90 121.90 3.1474 0.08297 .
Residuals 44 1704.18 38.73
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Looking at the ANOVA table, we have that variables 4, 1 and 7 are not statistically
significant at 5% level once variable 10, 3 and 5 are included in the model. However,
this variables are all included in the model by the AIC.

As a further step, we have a look at the standardized residuals for this final model.
Figure 1.1 shows the standardized residuals versus the fitted values (left panel) and the
QQ plot (right panel)
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Figure 1.1: Plot of standardized residuals versus fitted values (left) and QQ plot (right) for the
model with six explanatory variables.

Left panel of Figure 1.1 shows the constant variance assumption is okay, while the
normality assumption (right panel) shows some problems in the left tails. We have a
look at the usual Shapiro-Wilk test in R

> shapiro.test(stdresfinal)

Shapiro-Wilk normality test

data: stdresfinal
W = 0.95802, p-value = 0.06866

with p-value equal to 0.069, which is nearly to significance at 5% level, so we might
have to think to transforming the dependent variable.

In conclusion, looking at the VIF, we have

> vif(modfinal)
X10 X3 X5 X4 X1 X7

1.550514 1.720006 2.033735 1.734214 1.144043 1.418790

which are all less than 10, thus there is no problems with multicollinearity.
Then we can compute the leverage values

> hatvalues(modfinal)
1 2 3 4 5 6 7

0.07645769 0.57344144 0.13774677 0.06409605 0.35113013 0.16988339 0.15938588
8 9 10 11 12 13 14

0.09167765 0.32603150 0.30887106 0.10180379 0.24333131 0.10182275 0.05688161
15 16 17 18 19 20 21
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0.05995066 0.10258757 0.03424660 0.05838242 0.10231233 0.09764033 0.09994505
22 23 24 25 26 27 28

0.18610877 0.04213988 0.03497601 0.21376281 0.04095702 0.14538842 0.05339417
29 30 31 32 33 34 35

0.26688781 0.11821401 0.10750926 0.06957300 0.20610314 0.03962528 0.11862422
36 37 38 39 40 41 42

0.07374407 0.05221588 0.09467141 0.11750209 0.14397171 0.07612399 0.14077983
43 44 45 46 47 48 49

0.04607636 0.35687017 0.21888827 0.14660385 0.13422723 0.12592447 0.17361545
50 51

0.03572137 0.10217406

In the same way also the Cook’s distance:

> cooks.distance(modfinal)
1 2 3 4 5

2.446345e-02 1.964268e-01 3.999502e-04 7.687996e-04 2.041358e-01
6 7 8 9 10

4.852367e-02 5.381035e-03 1.121319e-02 6.521981e-01 2.099686e-01
11 12 13 14 15

2.974862e-03 2.529163e-02 2.538802e-02 3.913898e-03 2.115124e-03
16 17 18 19 20

3.020160e-02 3.977916e-03 3.864297e-05 4.699225e-02 2.505069e-02
21 22 23 24 25

2.511123e-03 2.474720e-04 1.262582e-03 6.869031e-03 1.475145e-02
26 27 28 29 30

3.297901e-08 2.298521e-03 1.227827e-02 2.678554e-02 8.751435e-04
31 32 33 34 35

2.611278e-02 9.025633e-03 1.401261e-03 1.604397e-03 1.634187e-03
36 37 38 39 40

4.172669e-04 5.275827e-03 8.429698e-03 5.706726e-03 2.420961e-02
41 42 43 44 45

8.655097e-03 2.110421e-03 2.213652e-05 1.565047e-03 7.981325e-02
46 47 48 49 50

1.989402e-01 8.052362e-03 1.241146e-02 2.402969e-03 4.838958e-03
51

2.574073e-03

We can also include the graphical representation of them:

> i = (1:51)
> plot(i,hatvalues(modfinal), main = "Leverage values, Election")
> plot(i,cooks.distance(modfinal), main = "Cook’s distance, Election")
> qf(p=0.5,df1 = 7, df2 = 44)
[1] 0.920551

Figure 1.2 shows the leverage values and Cook’s distance for the model with 6 ex-
planatory variables plus the intercept. In this case, we have n = 51 and p = 7 (6
regressors + 1 intercept), thus a leverage value is large if it is 14

51
= 0.274 and very large

if 21
51

= 0.412. Looking at thep plot we see that there is one very large value and a few
other large ones (The very large one is actually Alaska which has a number of unusual
regressor values).
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Figure 1.2: Plot of leverage values (left) and Cook’s distance (right) for the model with six
explanatory variables.

Moving to the Cook’s distance, the critical value for Cook’s distance is 0.92 from a
F distribution with 7 and 44 degrees of freedom and the highest Cook’s distance for
observation 9 is smaller than that. Thus it is nevertheless more influential than any
other state (It is actually District of Columbia, the area surrounding Washington).
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