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Question 1. [20 marks] Let A, B, C be points in 3-space with respective position vectors

a =

1
0
2

, b =

2
3
4

 , c =

−1
−3
−2

. Determine:

(a) The length of the vector 3a−b; [3]

(b) A unit vector in the direction of b; [3]

(c) a ·b; [3]

(d) a×b; [3]

(e) A vector equation for the line through A and B; [4]

(f) The coordinates of the point D such that ABCD is a parallelogram. [4]

Solutions 1.

(a) 3a−b =

 1
−3
2

, which has length
√

1+ 9+ 4 =
√

14.

(b) b has length
√

22 + 32 + 42 =
√

29, so a unit vector in the direction of b is

1√
29

b =

2/
√

29
3/
√

29
4/
√

29


(c) a ·b = 1×2+ 0×3+ 2×4 = 10

(d) a×b =

−6
0
3



(e) b−a =

1
3
2

, so a vector equation is r = a+λ (b−a) =

1
0
2

+λ

1
3
2

.

(f) Let d be the position vector for D. For ABCD to be a parallelogram we need

c−d = b−a, so d = a−b+ c =

1
0
2

−
2

3
4

+

−1
−3
−2

=

−2
−6
−4

, so D has

coordinates (−2,−6,−4).
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Question 2. [20 marks] Suppose that vectors u =

u1
u2
u3

 and v =

v1
v2
v3

 are given.

(a) Write down an expression for the scalar product u ·v (in terms of the coordinates of u
and v). [3]

(b) What does it mean to say that two vectors are orthogonal? [3]

(c) Show that if a vector is orthogonal to all vectors, then it must be the zero vector. [4]

(d) How is the vector product u×v defined (in terms of the coordinates of u and v)? [3]

(e) Show that u×v is orthogonal to u. [3]

(f) Show that if u has the property that u×v = 0 for all vectors v, then necessarily u = 0. [4]

Solutions 2.

(a) u ·v = u1v1 + u2v2 + u3v3

(b) Two vectors u, v are orthogonal if u ·v = 0.

(c) If u is such that u ·v = 0 for all v, then in particular |u|2 = u ·u = 0, so |u|= 0, and the
only vector with zero length is the zero vector, so u = 0.

(d) u×v =

 u2v3−u3v2
u3v1−u1v3
u1v2−u2v1

.

(e)

(u×v) ·u=

 u2v3−u3v2
u3v1−u1v3
u1v2−u2v1

·
 u1

u2
u3

= (u2v3−u3v2)u1+(u3v1−u1v3)u2+(u1v2−u2v1)u3

and we see that the three terms u1u2v3, u1u3v2, u2u3v1 each occur twice in this
expression, once with coefficient +1 and once with coefficient −1. The terms therefore
cancel in pairs, so the expression reduces to 0, whence the orthogonality.

(f) We might use the result (proved in lectures) that |u×v|= |u||v|sinθ where θ is the
angle between (non-zero) vectors u, v, so if v is chosen to be non-zero and with
sinθ > 0 (i.e. v is not a scalar multiple of u) then |u|= |u×v|/(|v|sinθ ) = 0, so u has
zero length and therefore must be the zero vector.

Alternatively, from the formula in (d) we see that 0 = u× i =

 0
u3
−u2

, so u2 = u3 = 0,

and 0 = u× j =

−u3
0
u1

, so u1 = 0; therefore u1 = u2 = u3 = 0, and hence u = 0.
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Question 3. [20 marks] Let Π1 be the x-y plane (i.e. with equation z = 0), let Π2 be the x-z
plane (i.e. with equation y = 0), let Π3 be the y-z plane (i.e. with equation x = 0), and let Π4

be the plane with equation x+ y+ z = 1. Let Q be the point with position vector q =

−3
2
1

.

(a) Determine the distance between Q and Π1. [2]

(b) Determine the distance between Q and Π4. [3]

(c) Determine the coordinates of the point on Π4 that is closest to Q. [3]

(d) If A denotes the point in the intersection Π1∩Π2∩Π4, and B denotes the point in the
intersection Π1∩Π3∩Π4, determine the coordinates of the mid-point C of A and B. [3]

(e) If l denotes the line through the points C (from part (d) above) and Q, then determine
the coordinates of the point in the intersection l∩Π3. [4]

(f) Determine the coordinates of a point which is equidistant from the four planes Π1, Π2,
Π3, Π4 (i.e. the point has the same distance from each of these planes). [5]
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Solutions 3.

(a) The distance is 1 (i.e. the z-component of q)

(b) The vector n =

1
1
1

 is orthogonal to Π4, so this distance (using the formula derived in

lectures) is |q ·n−1|/|n|= 1/
√

3.

(c) Using the formula from lectures, this closest point has position vector

q−
(

q ·n−1
|n|2

)
n =

−3
2
1

− (−1/3)

1
1
1

=

−8/3
7/3
4/3

 ,

so its coordinates are (−8/3,7/3,4/3).

(d) The point A has coordinates (1,0,0), and the point B has coordinates (0,1,0), so the
mid-point C has coordinates (1/2,1/2,0).

(e) The direction of l is given by

−3
2
1

−
1/2

1/2
0

=

−7/2
3/2

1

, so an equation for l is

r =

1/2
1/2

0

+λ

−7/2
3/2

1

, λ ∈R. The line l intersects Π3 when x = 0, i.e. when

1
2 −

7
2λ = 0, i.e. λ = 1/7. So the point of intersection has coordinates (0, 5

7 , 1
7).

(f) To be equidistant from Π1, Π2 and Π3 means the position vector of the point must be of

the form an =

a
a
a

 for some a ∈R, and the common distance to these planes is a. We

need that its distance to Π4 also equals a, in other words that

a =
|an ·n−1|
|n|

=
|3a−1|√

3
,

and this equation has the two solutions a = 1/(3−
√

3) and a = 1/(3+
√

3).

So one solution is the point with coordinates ( 1
3−
√

3
, 1

3−
√

3
, 1

3−
√

3
), another solution is

the point with coordinates ( 1
3+
√

3
, 1

3+
√

3
, 1

3+
√

3
).
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Question 4. [20 marks] Consider the linear system

x1 − 2x2 + x3 − x4 = 0
2x1 − 3x2 + 4x3 − 3x4 = 0
−x1 + x2 − 3x3 + 2x4 = 0 .

(a) Write down the augmented matrix of the system. [3]

(b) Bring the augmented matrix to reduced row echelon form, indicating the elementary
row operations used at each step. [4]

(c) Identify the leading and the free variables, and write down the solution set of the
system. [4]

(d) Let l1, l2 and l3 be lines in 3-space, such that l1 passes through (1,4,−3) in the direction 1
2
−1

, l2 passes through (1,3,−2) in the direction

 2
3
−1

, and l3 passes through

(2,6,−4) in the direction

 2
3
−1

.

Write down parametric equations for each of these three lines. [3]

(e) For the lines l1, l2, l3 as in part (d) above, determine the intersection l1∩ l2 of l1 and l2,
the intersection l1∩ l3 of l1 and l3, and the intersection l2∩ l3 of l2 and l3. [6]
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Solutions 4.

(a)  1 −2 1 −1 0
2 −3 4 −3 0
−1 1 −3 2 0

 .

(b) Using elementary row operations we find: 1 −2 1 −1 0
2 −3 4 −3 0
−1 1 −3 2 0

∼ R2−2R1
R3 +R1

 1 −2 1 −1 0
0 1 2 −1 0
0 −1 −2 1 0


∼ R3 +R2

 1 −2 1 −1 0
0 1 2 −1 0
0 0 0 0 0

∼ R1 + 2R2

 1 0 5 −3 0
0 1 2 −1 0
0 0 0 0 0

 ,

where the last matrix is now in reduced row echelon form.

(c) Leading variables: x1, x2. Free variables: x3, x4.

Let x4 = α and x3 = β . Then x1 = 3α−5β and x2 = α−2β . So the solution set can be
written as

{(3α−5β ,α−2β ,β ,α) : α ,β ∈R} .

(d) The line l1 has parametric equations

x = 1+λ

y = 4+ 2λ

z = −3−λ

 ,

the line l2 has parametric equations

x = 1+ 2µ

y = 3+ 3µ

z = −2−µ

 ,

and the line l3 has parametric equations

x = 2+ 2ν

y = 6+ 3ν

z = −4−ν

 .

(e) The lines l2 and l3 are parallel and distinct, so l2∩ l3 is the empty set.

The lines l1 and l2 do intersect, with l1∩ l2 = {(−1,0,−1)}. This could be computed
directly by equating the parametric equations for l1 and l2 to find λ = −2, µ = −1 (or
alternatively we could find λ , µ by setting (x1,x2,x3,x4) = (λ , µ ,1,1) in the system
from parts (a)–(c)).

The lines l1 and l3 do intersect, with l1∩ l3 = {(2,6,−4)}. This could be computed
directly by equating the parametric equations for l1 and l3 to find λ = 1, ν = 0 (or
alternatively we could find λ , ν by setting (x1,x2,x3,x4) = (λ ,ν ,1,2) in the system
from parts (a)–(c)).
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Question 5. [20 marks] Let

A =

(
1 3
−2 0

)
, B =


0 1
1 0
2 0
0 −1

 , C =


2 0 0 3
9 0 1 8
−8 2 4 5
3 0 0 5

 .

(a) For each of the products A2, AB, BA, B2, BC, CB, state whether or not it exists; if it
exists then evaluate it. [6]

(b) Explain what it means for a matrix M to be invertible, and what is meant by the inverse
of M. [4]

(c) Calculate det(C) and decide whether C is invertible or not. [4]

(d) Using part (c) above, evaluate det(C6) and det(3C). In each case, briefly explain which
property of determinants you are using. [4]

(e) Find det(D), where D is the matrix obtained from C by subtracting 13 times column 1
from column 4. Briefly explain which property of determinants you are using. [2]

Solutions 5.

(a) The products AB, B2, and BC do not exist, but the other three do exist, with

A2 =

(
−5 3
−2 −6

)
, BA =


−2 0
1 3
2 6
2 0

 , CB =


0 −1
2 1

10 −13
0 −2

 .

(b) A (necessarily square) matrix M is called invertible if it has an inverse. To say that N is
the inverse of N means that MN = NM = I (the identity matrix).

(c)

det(C) =

∣∣∣∣∣∣∣∣
2 0 0 3
9 0 1 8
−8 2 4 5
3 0 0 5

∣∣∣∣∣∣∣∣=−2

∣∣∣∣∣∣
2 0 3
9 1 8
3 0 5

∣∣∣∣∣∣= (−2) ·1 ·
∣∣∣∣2 3
3 5

∣∣∣∣= (−2) ·1 · (10−9) =−2.

Since det(C) = −2 6= 0, the matrix C is invertible.

(d) The determinant is multiplicative (i.e. det(MN) = det(M)det(N)), so
det(C6) = (det(C))6 = (−2)6 = 64.

Since 3C is obtained from C by multiplying each of the 4 rows by 3, it follows that

det(3C) = 34 det(C) = −2 ·34 = −162.

(e) Since determinants are not changed by elementary column operations of type III we
have det(D) = det(C) = −2.

End of Paper.
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