Main Examination period 2019
MTH4115/MTH4215: Vectors \& Matrices

Duration: 2 hours

Abstract

Apart from this page, you are not permitted to read the contents of this question paper until instructed to do so by an invigilator.

You should attempt ALL questions. Marks available are shown next to the questions.

Calculators are not permitted in this examination. The unauthorised use of a calculator constitutes an examination offence.

Complete all rough work in the answer book and cross through any work that is not to be assessed.

Possession of unauthorised material at any time when under examination conditions is an assessment offence and can lead to expulsion from QMUL. Check now to ensure you do not have any unauthorised notes, mobile phones, smartwatches or unauthorised electronic devices on your person. If you do, raise your hand and give them to an invigilator immediately.

It is also an offence to have any writing of any kind on your person, including on your body. If you are found to have hidden unauthorised material elsewhere, including toilets and cloakrooms, it will be treated as being found in your possession. Unauthorised material found on your mobile phone or other electronic device will be considered the same as being in possession of paper notes. A mobile phone that causes a disruption in the exam is also an assessment offence.

Exam papers must not be removed from the examination room.

Examiners: O. Jenkinson, R. Johnson

Question 1. [20 marks] Let A, B, C be points in 3-space with respective position vectors $\mathbf{a}=\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right), \mathbf{b}=\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right), \mathbf{c}=\left(\begin{array}{l}-1 \\ -3 \\ -2\end{array}\right)$. Determine:
(a) The length of the vector $3 \mathbf{a}-\mathbf{b}$;
(b) A unit vector in the direction of \mathbf{b};
(c) $\mathbf{a} \cdot \mathbf{b}$;
(d) $\mathbf{a} \times \mathbf{b}$;
(e) A vector equation for the line through A and B;
(f) The coordinates of the point D such that $A B C D$ is a parallelogram.

Solutions 1.

(a) $3 \mathbf{a}-\mathbf{b}=\left(\begin{array}{c}1 \\ -3 \\ 2\end{array}\right)$, which has length $\sqrt{1+9+4}=\sqrt{14}$.
(b) \mathbf{b} has length $\sqrt{2^{2}+3^{2}+4^{2}}=\sqrt{29}$, so a unit vector in the direction of \mathbf{b} is
$\frac{1}{\sqrt{29}} \mathbf{b}=\left(\begin{array}{l}2 / \sqrt{29} \\ 3 / \sqrt{29} \\ 4 / \sqrt{29}\end{array}\right)$
(c) $\mathbf{a} \cdot \mathbf{b}=1 \times 2+0 \times 3+2 \times 4=10$
(d) $\mathbf{a} \times \mathbf{b}=\left(\begin{array}{c}-6 \\ 0 \\ 3\end{array}\right)$
(e) $\mathbf{b}-\mathbf{a}=\left(\begin{array}{l}1 \\ 3 \\ 2\end{array}\right)$, so a vector equation is $\mathbf{r}=\mathbf{a}+\lambda(\mathbf{b}-\mathbf{a})=\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 3 \\ 2\end{array}\right)$.
(f) Let \mathbf{d} be the position vector for D. For $A B C D$ to be a parallelogram we need $\mathbf{c}-\mathbf{d}=\mathbf{b}-\mathbf{a}$, so $\mathbf{d}=\mathbf{a}-\mathbf{b}+\mathbf{c}=\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right)-\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right)+\left(\begin{array}{l}-1 \\ -3 \\ -2\end{array}\right)=\left(\begin{array}{l}-2 \\ -6 \\ -4\end{array}\right)$, so D has coordinates $(-2,-6,-4)$.

Question 2. [20 marks] Suppose that vectors $\mathbf{u}=\left(\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right)$ and $\mathbf{v}=\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right)$ are given.
(a) Write down an expression for the scalar product $\mathbf{u} \cdot \mathbf{v}$ (in terms of the coordinates of \mathbf{u} and \mathbf{v}).
(b) What does it mean to say that two vectors are orthogonal?
(c) Show that if a vector is orthogonal to all vectors, then it must be the zero vector.
(d) How is the vector product $\mathbf{u} \times \mathbf{v}$ defined (in terms of the coordinates of \mathbf{u} and \mathbf{v})?
(e) Show that $\mathbf{u} \times \mathbf{v}$ is orthogonal to \mathbf{u}.
(f) Show that if \mathbf{u} has the property that $\mathbf{u} \times \mathbf{v}=\mathbf{0}$ for all vectors \mathbf{v}, then necessarily $\mathbf{u}=\mathbf{0}$.

Solutions 2.
(a) $\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}$
(b) Two vectors \mathbf{u}, \mathbf{v} are orthogonal if $\mathbf{u} \cdot \mathbf{v}=0$.
(c) If \mathbf{u} is such that $\mathbf{u} \cdot \mathbf{v}=0$ for all \mathbf{v}, then in particular $|\mathbf{u}|^{2}=\mathbf{u} \cdot \mathbf{u}=0$, so $|\mathbf{u}|=0$, and the only vector with zero length is the zero vector, so $\mathbf{u}=\mathbf{0}$.
(d) $\mathbf{u} \times \mathbf{v}=\left(\begin{array}{l}u_{2} v_{3}-u_{3} v_{2} \\ u_{3} v_{1}-u_{1} v_{3} \\ u_{1} v_{2}-u_{2} v_{1}\end{array}\right)$.
(e)
$(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u}=\left(\begin{array}{l}u_{2} v_{3}-u_{3} v_{2} \\ u_{3} v_{1}-u_{1} v_{3} \\ u_{1} v_{2}-u_{2} v_{1}\end{array}\right) \cdot\left(\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right)=\left(u_{2} v_{3}-u_{3} v_{2}\right) u_{1}+\left(u_{3} v_{1}-u_{1} v_{3}\right) u_{2}+\left(u_{1} v_{2}-u_{2} v_{1}\right) u_{3}$
and we see that the three terms $u_{1} u_{2} v_{3}, u_{1} u_{3} v_{2}, u_{2} u_{3} v_{1}$ each occur twice in this expression, once with coefficient +1 and once with coefficient -1 . The terms therefore cancel in pairs, so the expression reduces to 0 , whence the orthogonality.
(f) We might use the result (proved in lectures) that $|\mathbf{u} \times \mathbf{v}|=|\mathbf{u}||\mathbf{v}| \sin \theta$ where θ is the angle between (non-zero) vectors \mathbf{u}, \mathbf{v}, so if \mathbf{v} is chosen to be non-zero and with $\sin \theta>0$ (i.e. v is not a scalar multiple of \mathbf{u}) then $|\mathbf{u}|=|\mathbf{u} \times \mathbf{v}| /(|\mathbf{v}| \sin \theta)=0$, so \mathbf{u} has zero length and therefore must be the zero vector.
Alternatively, from the formula in (d) we see that $\mathbf{0}=\mathbf{u} \times \mathbf{i}=\left(\begin{array}{c}0 \\ u_{3} \\ -u_{2}\end{array}\right)$, so $u_{2}=u_{3}=0$, and $\mathbf{0}=\mathbf{u} \times \mathbf{j}=\left(\begin{array}{c}-u_{3} \\ 0 \\ u_{1}\end{array}\right)$, so $u_{1}=0$; therefore $u_{1}=u_{2}=u_{3}=0$, and hence $\mathbf{u}=\mathbf{0}$.

Question 3. [20 marks] Let Π_{1} be the $x-y$ plane (i.e. with equation $z=0$), let Π_{2} be the $x-z$ plane (i.e. with equation $y=0$), let Π_{3} be the $y-z$ plane (i.e. with equation $x=0$), and let Π_{4} be the plane with equation $x+y+z=1$. Let Q be the point with position vector $\mathbf{q}=\left(\begin{array}{c}-3 \\ 2 \\ 1\end{array}\right)$.
(a) Determine the distance between Q and Π_{1}.
(b) Determine the distance between Q and Π_{4}.
(c) Determine the coordinates of the point on Π_{4} that is closest to Q.
(d) If A denotes the point in the intersection $\Pi_{1} \cap \Pi_{2} \cap \Pi_{4}$, and B denotes the point in the intersection $\Pi_{1} \cap \Pi_{3} \cap \Pi_{4}$, determine the coordinates of the mid-point C of A and B.
(e) If l denotes the line through the points C (from part (d) above) and Q, then determine the coordinates of the point in the intersection $l \cap \Pi_{3}$.
(f) Determine the coordinates of a point which is equidistant from the four planes Π_{1}, Π_{2}, Π_{3}, Π_{4} (i.e. the point has the same distance from each of these planes).

Solutions 3.

(a) The distance is 1 (i.e. the z-component of \mathbf{q})
(b) The vector $\mathbf{n}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ is orthogonal to Π_{4}, so this distance (using the formula derived in lectures) is $|\mathbf{q} \cdot \mathbf{n}-1| /|\mathbf{n}|=1 / \sqrt{3}$.
(c) Using the formula from lectures, this closest point has position vector

$$
\mathbf{q}-\left(\frac{\mathbf{q} \cdot \mathbf{n}-1}{|\mathbf{n}|^{2}}\right) \mathbf{n}=\left(\begin{array}{c}
-3 \\
2 \\
1
\end{array}\right)-(-1 / 3)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
-8 / 3 \\
7 / 3 \\
4 / 3
\end{array}\right)
$$

so its coordinates are $(-8 / 3,7 / 3,4 / 3)$.
(d) The point A has coordinates $(1,0,0)$, and the point B has coordinates $(0,1,0)$, so the mid-point C has coordinates ($1 / 2,1 / 2,0$).
(e) The direction of l is given by $\left(\begin{array}{c}-3 \\ 2 \\ 1\end{array}\right)-\left(\begin{array}{c}1 / 2 \\ 1 / 2 \\ 0\end{array}\right)=\left(\begin{array}{c}-7 / 2 \\ 3 / 2 \\ 1\end{array}\right)$, so an equation for l is $\mathbf{r}=\left(\begin{array}{c}1 / 2 \\ 1 / 2 \\ 0\end{array}\right)+\lambda\left(\begin{array}{c}-7 / 2 \\ 3 / 2 \\ 1\end{array}\right), \lambda \in \mathbb{R}$. The line l intersects Π_{3} when $x=0$, i.e. when $\frac{1}{2}-\frac{7}{2} \lambda=0$, i.e. $\lambda=1 / 7$. So the point of intersection has coordinates $\left(0, \frac{5}{7}, \frac{1}{7}\right)$.
(f) To be equidistant from Π_{1}, Π_{2} and Π_{3} means the position vector of the point must be of the form $a \mathbf{n}=\left(\begin{array}{l}a \\ a \\ a\end{array}\right)$ for some $a \in \mathbb{R}$, and the common distance to these planes is a. We need that its distance to Π_{4} also equals a, in other words that

$$
a=\frac{|a \mathbf{n} \cdot \mathbf{n}-1|}{|\mathbf{n}|}=\frac{|3 a-1|}{\sqrt{3}},
$$

and this equation has the two solutions $a=1 /(3-\sqrt{3})$ and $a=1 /(3+\sqrt{3})$.
So one solution is the point with coordinates $\left(\frac{1}{3-\sqrt{3}}, \frac{1}{3-\sqrt{3}}, \frac{1}{3-\sqrt{3}}\right)$, another solution is the point with coordinates $\left(\frac{1}{3+\sqrt{3}}, \frac{1}{3+\sqrt{3}}, \frac{1}{3+\sqrt{3}}\right)$.

Question 4. [20 marks] Consider the linear system

$$
\begin{array}{r}
x_{1}-2 x_{2}+x_{3}-x_{4}=0 \\
2 x_{1}-3 x_{2}+4 x_{3}-3 x_{4}=0 \\
-x_{1}+x_{2}-3 x_{3}+2 x_{4}=0
\end{array} .
$$

(a) Write down the augmented matrix of the system.
(b) Bring the augmented matrix to reduced row echelon form, indicating the elementary row operations used at each step.
(c) Identify the leading and the free variables, and write down the solution set of the system.
(d) Let l_{1}, l_{2} and l_{3} be lines in 3 -space, such that l_{1} passes through $(1,4,-3)$ in the direction $\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right), l_{2}$ passes through $(1,3,-2)$ in the direction $\left(\begin{array}{c}2 \\ 3 \\ -1\end{array}\right)$, and l_{3} passes through $(2,6,-4)$ in the direction $\left(\begin{array}{c}2 \\ 3 \\ -1\end{array}\right)$.
Write down parametric equations for each of these three lines.
(e) For the lines l_{1}, l_{2}, l_{3} as in part (d) above, determine the intersection $l_{1} \cap l_{2}$ of l_{1} and l_{2}, the intersection $l_{1} \cap l_{3}$ of l_{1} and l_{3}, and the intersection $l_{2} \cap l_{3}$ of l_{2} and l_{3}.

Solutions 4.

(a)

$$
\left(\begin{array}{cccc|c}
1 & -2 & 1 & -1 & 0 \\
2 & -3 & 4 & -3 & 0 \\
-1 & 1 & -3 & 2 & 0
\end{array}\right) .
$$

(b) Using elementary row operations we find:

$$
\begin{aligned}
& \left(\begin{array}{cccc|c}
1 & -2 & 1 & -1 & 0 \\
2 & -3 & 4 & -3 & 0 \\
-1 & 1 & -3 & 2 & 0
\end{array}\right) \underset{\substack{ \\
\sim \\
R_{2}-2 R_{1}}}{ }\left(\begin{array}{cccc|c}
1 & -2 & 1 & -1 & 0 \\
0 & 1 & 2 & -1 & 0 \\
0 & -1 & -2 & 1 & 0
\end{array}\right) \\
\sim & R_{3}+R_{2}\left(\begin{array}{cccc|c}
1 & -2 & 1 & -1 & 0 \\
0 & 1 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \sim{ }_{R_{1}+2 R_{2}}\left(\begin{array}{cccc|c}
1 & 0 & 5 & -3 & 0 \\
0 & 1 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right),
\end{aligned}
$$

where the last matrix is now in reduced row echelon form.
(c) Leading variables: x_{1}, x_{2}. Free variables: x_{3}, x_{4}.

Let $x_{4}=\alpha$ and $x_{3}=\beta$. Then $x_{1}=3 \alpha-5 \beta$ and $x_{2}=\alpha-2 \beta$. So the solution set can be written as

$$
\{(3 \alpha-5 \beta, \alpha-2 \beta, \beta, \alpha): \alpha, \beta \in \mathbb{R}\} .
$$

(d) The line l_{1} has parametric equations

$$
\left.\begin{array}{c}
x=1+\lambda \\
y=4+2 \lambda \\
z=-3-\lambda
\end{array}\right\}
$$

the line l_{2} has parametric equations

$$
\left.\begin{array}{l}
x=1+2 \mu \\
y=3+3 \mu \\
z=-2-\mu
\end{array}\right\}
$$

and the line l_{3} has parametric equations

$$
\left.\begin{array}{l}
x=2+2 v \\
y=6+3 v \\
z=-4-v
\end{array}\right\} .
$$

(e) The lines l_{2} and l_{3} are parallel and distinct, so $l_{2} \cap l_{3}$ is the empty set.

The lines l_{1} and l_{2} do intersect, with $l_{1} \cap l_{2}=\{(-1,0,-1)\}$. This could be computed directly by equating the parametric equations for l_{1} and l_{2} to find $\lambda=-2, \mu=-1$ (or alternatively we could find λ, μ by setting $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(\lambda, \mu, 1,1)$ in the system from parts (a)-(c)).
The lines l_{1} and l_{3} do intersect, with $l_{1} \cap l_{3}=\{(2,6,-4)\}$. This could be computed directly by equating the parametric equations for l_{1} and l_{3} to find $\lambda=1, v=0$ (or alternatively we could find λ, v by setting $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(\lambda, v, 1,2)$ in the system from parts (a)-(c)).

Question 5. [20 marks] Let

$$
A=\left(\begin{array}{cc}
1 & 3 \\
-2 & 0
\end{array}\right), \quad B=\left(\begin{array}{cc}
0 & 1 \\
1 & 0 \\
2 & 0 \\
0 & -1
\end{array}\right), \quad C=\left(\begin{array}{cccc}
2 & 0 & 0 & 3 \\
9 & 0 & 1 & 8 \\
-8 & 2 & 4 & 5 \\
3 & 0 & 0 & 5
\end{array}\right) .
$$

(a) For each of the products $A^{2}, A B, B A, B^{2}, B C, C B$, state whether or not it exists; if it exists then evaluate it.
(b) Explain what it means for a matrix M to be invertible, and what is meant by the inverse of M.
(c) Calculate $\operatorname{det}(C)$ and decide whether C is invertible or not.
(d) Using part (c) above, evaluate $\operatorname{det}\left(C^{6}\right)$ and $\operatorname{det}(3 C)$. In each case, briefly explain which property of determinants you are using.
(e) Find $\operatorname{det}(D)$, where D is the matrix obtained from C by subtracting 13 times column 1 from column 4. Briefly explain which property of determinants you are using.
Solutions 5.
(a) The products $A B, B^{2}$, and $B C$ do not exist, but the other three do exist, with

$$
A^{2}=\left(\begin{array}{cc}
-5 & 3 \\
-2 & -6
\end{array}\right), \quad B A=\left(\begin{array}{cc}
-2 & 0 \\
1 & 3 \\
2 & 6 \\
2 & 0
\end{array}\right), \quad C B=\left(\begin{array}{cc}
0 & -1 \\
2 & 1 \\
10 & -13 \\
0 & -2
\end{array}\right)
$$

(b) A (necessarily square) matrix M is called invertible if it has an inverse. To say that N is the inverse of N means that $M N=N M=I$ (the identity matrix).
(c)
$\operatorname{det}(C)=\left|\begin{array}{cccc}2 & 0 & 0 & 3 \\ 9 & 0 & 1 & 8 \\ -8 & 2 & 4 & 5 \\ 3 & 0 & 0 & 5\end{array}\right|=-2\left|\begin{array}{ccc}2 & 0 & 3 \\ 9 & 1 & 8 \\ 3 & 0 & 5\end{array}\right|=(-2) \cdot 1 \cdot\left|\begin{array}{ll}2 & 3 \\ 3 & 5\end{array}\right|=(-2) \cdot 1 \cdot(10-9)=-2$.
Since $\operatorname{det}(C)=-2 \neq 0$, the matrix C is invertible.
(d) The determinant is multiplicative (i.e. $\operatorname{det}(M N)=\operatorname{det}(M) \operatorname{det}(N)$), so
$\operatorname{det}\left(C^{6}\right)=(\operatorname{det}(C))^{6}=(-2)^{6}=64$.
Since $3 C$ is obtained from C by multiplying each of the 4 rows by 3 , it follows that

$$
\operatorname{det}(3 C)=3^{4} \operatorname{det}(C)=-2 \cdot 3^{4}=-162
$$

(e) Since determinants are not changed by elementary column operations of type III we have $\operatorname{det}(D)=\operatorname{det}(C)=-2$.

End of Paper.

