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1 Equivalence relations, modular arithmetic etc.

GOAL: Get used to an axiomatic approach to mathematics— given definitions/axioms, derive gen-
eral statements about integers (that we know too well) via proofs and careful inspection of defini-
tions etc.

Proposition 1. Let @ and b be integers and suppose b > 0. Then a = bg + r for some integers ¢
and 0 < 7 < b. The pair (¢,7) is unique.

Definition. Let @ and b be integers. We say that a divides b if there exists an integer ¢ such that
b = ac.

Remark. The only integer 0 divides is 0 icself.

Definition. Let @ and b be integers. A common divisor of @ and b is a non-negative integer s
such that s divides both @ and b. A ged of @ and b is the common divisor 7 satisfying the property
that if s is another (different) common divisor of @ and b, thens < r.

Proposition 2. s divides .

We can say something similar for the lem of @ and .

Proposition 4. If @ is a non-negative integer, gcd(a, 0) = a. This is not a definition.

Lemma 5. ged(a, b) = ged(—a, b) = ged(a, —b) = ged(—a, —b). This is not a definition.

Theorem 7 (Bezout’s identity). Let @ and b be integers. Then there exist integers r and s such

that ar + bs = ged(a, b).

The proof of Bezout explains only that these integers 7 and s exist and does not shed any light
on how to actually find them. In practice, we make appeal to Euclid’s algorithm instead.

Euclid’s algorithm is based on the following proposition:



Proposition 6. Let @ and b be integers. Suppose b > 0. By Proposition 1, there exists a uniqe
pair of integers ¢ and 0 < r < b such that a = bg + r. Then ged(a, b) = ged(b, r).

How do we use Euclid’s algorithm to find 7 and s satistying ar + bs = ged(a, b)?

Definition. A prime number is a positive integer n whose positive integer divisor is 1 or itself.
Alternatively, we may define it as a positive integer whose integer divisors are {£1, £n}.

By Bezout, this is equivalent to the following: if @ and b are integers and n divides ab, then n
divides either @ or b. The latter definition allows us to prove:

Theorem 8 (the Fundamental Theorem of Arithmetic). Every integer is of the form
(—=~]]¢"
4

for some non-negative integers 7o, and 7, up to reordering of prime factors. The power 7, is the
maximum number of time p divides the integer. For example, 45 = 3% - 5507, = 0 if p is not 3
nor 5,73 =2,r5 = land oo = 0.

Let R be a relation on S. We let [a] = [a]g denote the subset of all b in S which are related to
a,ic. aRb. If R is an equivalence relation (satisfying a set of conditions), then
aRb it and only if [a] = [b].
Theorem 9. Given a set S, there exists a bijective Correspondence between
o the equivalence relations R on S,

o the partitions P (a set of subsets of S satisfying certain conditions) on S.

Proposition 10. Let 7 be a positive integer. Then (R, S) = (= Z), defined such thata = b
mod 7 if and only if 7 divides b — a (for integers @ and b), is an equivalence relation.

Definition. Let Z, denote the set of equivalence classes [a] with respect to (=, Z).
Since @ = bmod n if and only if [a] = [b], alot of equivalence classes may be identified. Indeed,
Proposition 11. |Z,| = n.

Proposition 1 proves Proposition 11. Indeed, if @ is an integer (n is, by definition, a positive
integer), then there exists ¢ and 0 < r < n such that @ = ng + r. Therefore a = r, ie. [a] = [r].
The proof also elaborates that Z,, = {[0], [1], ..., [n — 1]}. The element [r] is nothing other than
the set of integers b with remainder r when divided by n (i.e. b = 7 mod n).

On Z,, we define 4+, —, x:
o] + 6] = [a+0b]
la] = 1b] = la—1]
a]lt} = [ad]



but no division. These do not depend on choice of representatives, ie. if @ = @ mod n, then

la] + [b] = [d'] + [b] etc.
No division is defined but:

Definition. We say that [a] of Z, has multiplicative inverse if there exists an integer b such that
[a][b] = [1] (or equivalently ab = 1 mod n). This plays the role of 1/[a] but not literally (1/[a] or

[1/a] simply does not make sense!). The multiplicative inverse is often written as [a] ™.

Remark. The multiplicative inverse, if exists, is unique. Suppose that [b] and [c] are elements
of Z, such that [a][b] = [1] and [a][c] = [1]. Multiplying both sides of [¢][a] = [1] by [], we obtain
[c][a][6] = [1][8], i.c. [e] = [6].

Theorem 12. An element [a] of Z, has multiplicative inverse if and only if ged(a, n) = 1.

The proof explains how to find the multiplicative inverse explicitly. If @ is an integer such that
ged(a,n) = 1 (which one can check in practice by Euclid’s algorithm), Euclid’s algorithm finds
integers b and ¢ such that ab + nc = ged(a,n) = 1. It then follows that ab = 1 mod n, ie.

[a][6] = [ab] = [1].

Proposition 13. An element [a] of Z,, has no multiplicative inverse if and only if there exists b,
not congruent to 0 mod n, such that [a][b] = [0].

Example. [2]4[3]6 = [0]6.

[t is possible to compute the number of elements in Z, with multiplicative inverses, using the
fundamental theorem of arithmetic: it = Hpr”, then it is computed by [T, (p — 1)p" .
P

What is it useful for? It is possible to solve ‘linear congruence equations”: ax + b = ¢ mod n
(when ged(a,n) = 1). Indeed, [x] = [¢ — b][a] ™ where [a] ™! is the multiplicative inverse of [a]
(this is NOT 1/[a]). What it ged(a,n) > 1?7 Take Number Theory next year!

2 Groups, Rings and Fields

Goal. Understand axioms of groups, ring and fields, together with their elementary properties.
Wrap your head around the idea that 4 and X are just operations that satisfy axioms.

Definition. A group is a set G with an operation * on G satisfying the following axioms:
(GO) Ifa,b are elements of G, then @ * b is an element of G.
(G1) Ifa,b,care elements of G, thena * (b *¢) = (a xb) xc.

(G2) 'There is an element e in G (called the identity element) such that @ ¥ e = e *a = a for every
element of G.



(G3) For every element a of G, there exists b in G such thata * b = b x a = e. The element b is
called the inverse of a.

(G4) Ifa,b are elements of G, thenaxb = b *a.

When these five conditions hold, we say (G, ) (or simply G if the operation * is clear from the
context) is a commutative/abelian group. By groups, I shall mean abelian groups unless otherwise

specified.

Example. Let S be a non-empty set. Let Sym(S) be the set of *bijective” functionsa : § — §

and * be the composition o— if @ and b are elements of G, then a 0 b is the composite § 2, SLS
sending s to a(b(s)). Then (Sym(S), o) is a group.

Proposition 14. Let (G, *) be a group.

e 'The identity element of G is unique.

e Each element a of G has a unique inverse (written multiplicatively as a ).
o Ifaxb=axc thenb=c. Similarly,if b*xa =c¢*a, thenb = c.

e Foranya,bin G, then (axb)™ =b"' xa™t.

Definition. A ring is a set R which comes equipped with two operations, + (addition) and X
(multiplication), satisfying the following axioms:

(R+0) Ifa,b are elements of R, then @ + b is an element of R.
(R+1) Ifa, b, c are elements of R, thena + (b+¢) = (a + b) +c.

(R4+2) Thereisan element 0in R such thata+0 = 0+a = a for every element of R- the element is
sometimes referred to as the additive identity element, or the identity element with respect

to +/addition.
(R+3) For every element a of R, there exists b in G such thata +b=b+a = 0.
(R+4) Ita, b are elements of R, thena +b=b+a.
(Rx0) Ifa,b are clements of R, then @ X b is an element of R.
(Rx1) Ifa,b,care elements of R, thena X (b x ¢) = (a x b) x c.

(Rx+) Ifa,b,care elements of R, then

ax(b+c)=axb+axec.

(R+x) Ifa,b,c are elements of R, then

(b+c¢)xa=bxa+cxa.



Remark. The first five axioms say that (G, ) = (R, +) is an additive (abelian) group.

Remark. As seen in groups, the operations + and X are just symbols/names given to operations
that satisfy a bunch of conditions that pin down + and X on Z (it is precisely for this reason that
the symbols ‘4" and “x” are used conventionally). See examples below.

Remark. We often write ab instead of a x b.
Definition. A ring R is said to be a commutative ring if @ X b = b x a holds for all @, b in R.

Example. The set of 2-by-2 matrices with entries in the real numbers R is a non-commurative

ring. For example, <é 8) <8 é) = (8 é) but (8 (1)) ((1) 8) = <8 8) The non-

commutativity holds more generally (see Proposition 35).

Proposition 15. Let (R, +, X) be a ring,

o 'There is a unique zero element,

e Any element has a unique additive inverse.
e Ifa+b=a+c thenb=c.

Proposition 16. Let R be a ring. For every element a of R, we have 0a = a0 = 0.

Definition. Let R be a ring. If R has an element 1 (the multiplicative identity element) such
that, for every @ in R, we havea X 1 = 1 X a = a, then we say R is a ring with identity (commonly
understood as *multiplicative® identity). The additive identity 0 and the multiplicative identity
(if exists) do not have to be distinct.

Theorem 17. The set Z,, with addition and multiplication modulo 7 as defined before, is a
commutative ring with identity [1].

Examples (of rings without identity).
o The set of even integers is a ring (with respect to usual + and x) without identity— the set of
odd integers is not even a ring!

o
e Let R be the set of continuous funcrions f : R — R such that / f < oo. This is a ring.
0

o
However, the identity function 1 is not an element of R as / 1 =o00.
0

o A group (G, *) with trivial multiplication is not a ring with identity, unless G = {e}.

Definition. Let R be a ring with identity element 1. An element @ in R is called a unit if there

is an element b in R such that ab = ba = 1. The element b is called the inverse of b, and is written

asa L.



Remark. If R is a ring with identity, an element a is a unit if and only if @ has multiplicative
inverse. To put it another way,

{units in R} = {elements in R with multiplicative inverses}.

Definition. We will denote by R* the units of R.

Proposition 18. The units of Z, are the subset of equivalence classes [a] in Z represented by
integers @ such that ged(a, n) = 1. Furthermore, |Z,| = ¢(n).

The following proposition puts together some of the key properties of the multiplicative iden-
tity 1.

Proposition 19. Let R be a ring with (multiplicative) identity 1.
o The idcntity element 1 is unique.
o If 1 is distinct from the additive identity 0, then 0 is NOT a unit.

e 1 isaunit and its inverse is 1 icself.
Proposition 20. Let R be a ring with (multiplicative) identity 1.

e Ifaisaunit, the inverse of @ is unique.

e Ifaisaunit, then so is a™'= the inverse of @~ is indeed a.

o [fa and b are units, then so is ab; and its inverse is b~ ta™ L.

The frequency with which the proof of Proposition 14 was useful in proving statements in the
propositions is suggestive of:

Theorem 21. If (R, +, X ) is aring with identity, (R*, X) is a group. If, furthermore, (R, +, X)

is commurative, (R*, X) is abelian.

Example. Let (Z, 4+, X) be the ring of integers with usual addition + and multiplication x.
Define new addition H:
aBb=a+b+1

and new multiplication

aXb=a+b+ab
in terms of old + and X. Then this is a commutative ring with identity, where the zero identity (the
identity element with respect to addition, as prescribed by (R+2)) is —1 and the multiplicative
identity is 0!

Checking why this is true involves a lot of work:

o (R+0)Sincca+b+1€Z, wehavealBb=a+b+1€cZ.



e (R+1) On one hand,
aB (B¢ =aBb+c+1)=a+(b+c+1)+1=a+b+c+ 1
On the other hand,
(@aBb)Bc=(e+b+1)Bec=(a+b+1)+c+1=a+b+c+ 1

Therefore
aB (bHBc¢)=(«Bb)He.

o (R+2) (—1) is the identity element with respect to K. Indeed,
aB(-1)=a+(-1)+1=a

and
(-1)Ba=(-1)4+a+1=a.

[To find the identity, we need to find b in Z such that a Bb = a holds for any a. By definition,
this is equivalent to finding b satistyinga + b +1 = a,i.c. b+ 1 = 0. Therefore b = —1]

® (R+3) The inverse of @ with respect to H is —a — 2. Indeed,
aB(-a—2)=a+(-a—-2)+1=-1

and

(—a—2)Ba=(—a—2)+a+1=—-1

[To find the inverse of @, we need to find b such thata b = —1 (since —1 is the identity with
respect to H!) for example. This is equivalent toa + b+ 1= —1,ie,b = —a — 2/]

o (R+4)
aBb=a+b+1=b+a+1=0bHa.

o (Rx0) Sincea+b+ab € Z, wehavea®b=a+b+ab € Z
e (Rx 1) On one hand,
aR(bXRc)=aX(b+c+bc)=a+ (b+c+bc)+alb+c+be).
On the other hand,
(aRb)Re=(a+b+ab)Rc=(a+b+ab)+c+ (a+b+ab)c.
It follows from (R+4), (Rx 1), (Rx+) and (R+x) for (Z, +, X) that
a®(bXc¢)=(aXb)Ke.
e (Rx+) On one hand,

a®(bBc)=a®(b+c+1)=a+(b+c+1)+alb+c+1).



On the other hand,
(aXb)B(aNc)=(a+b+ab)B(a+c+ac)=(a+b+ab)+ (a+c+ac)+ 1.
It then follows from (R+4), (Rx+) and (R4x) for (Z, +, x) that
aX(bHBc) = (aXb) B (aXc).
e (R+x) On one hand,
bB)Ra=(b+c+1)Ra=b+c+1)+a+(b+c+1a
On the other hand,
(bRa)B (cRa)=(b+a+ba)B(c+a+ca)=(b+a+ba)+ (c+a+ca)+1.
It then follows from (R+4), (R x+) and (R+4-x) for (Z, +, x) that
(bHBc)Xa= (bXa)HB (cXa).
e (Z,H,X¥) is commutative. Since (Z, +, X ) is a commutative ring,
aRb=a+b+ab=b+a+ba=bKa.
e The multiplicative identity with respect to X is 0. Indeed,
aX0=a+0+a0=a

and
OXa=0+a+ 0a = a.
[To find this, we need to find b in Z such that a b = @ holds for every a. This is equivalent to
finding b satistyinga + b + ab = a, i.e. b(1 + a) = 0, holds for every a. Therefore b = 0]

The units of (Z, 8, X) are {0, —2}. To see this, we need to find integers a (and b) such that
al¥b =0, ic a+b+ab=0. Thisis equivalent to (a+1)(b+ 1) = —1. Therefore, (¢ +1,b+1)
is either (1, —1) or (=1, 1). In other words, (a, ) is either (0, —2) or (=2, 0).

Definition. A field is a *commutative® ring (F, +, X ) satisfying the axioms
e (F,+) is an (abelian) additive group (with identity element 0)

o (F—{0}, x) isamultiplicative group (with identity element 1). Since (F, 4, X) is assumed
to be commutative, (F — {0}, X) is necessarily an abelian multiplicative group.

o 'The additive identity ‘0’ (the identity element in the group (F,+)) is distinct from the
multiplicative identity ‘1’ (the identity element in the group (F — {0}, x)).



Remark. If 1 = 0, thena = 1 X a = 0 x a = 0 (the last equality needs to be justified; see
Proposition ?). So the condition 1 # 0 denies any set with one element {1 = 0} any chance of

being a field.

Remark. By definition,
Field = Ring = Group

Remark. Groups encapsulate ‘symmetry’. Why rings (and not fields)? In general, elements of
a ring do not have (multiplicative) inverses and this is not a bad things and this actually makes
rings interesting. For example, the division algorithm would be vacuous if everything in Z had an
inverse (i.e. is divisible).

Theorem 22. If p is a prime number, then F, = Z,, is a field.

Definition. The set C of complex numbers is the set of elements of the form a + b/—1 where
a, b are real numbers.

We define addition and multiplication on C by

(@+bv=1)+ (c+dvV=1)=(a+¢c)+ (b+d)V—1
(a+bv/—1) x (¢ +dv/—1) = (ac — bd) + (ad + bc)v/—1.

Theorem 23. The set C is a field.

We have special names for rings which satisfy some, but not all; of the axioms a field needs to
satisfy.

Definition. We say that a ring R with identity is called a division ring/skew field if it satisfies
all the axioms except the commutativity of multiplication (@ X b = b x a for all a,b in R)- a field
assumes the set of non-zero elements is an abelian group with respect to X.

The name ‘division ring’ is justified by the following assertion:

Proposition 24. Let R be a division ring and a is non-zero element of R. Ifab = ac, then b = c.

Example. Let H be the set of elements of the form

cl+c(p)p +c(g)g + c(r)r
where
o ¢.c(p),c(q),c(r) range over R
e 1,p,q,r are symbols subject to the ‘multiplicative relations’
o lp=pl=p lg=ql=q lr=rl=r

o =1, =—1,r2=-1

9



o pgr=-1

In terms of natural addition and multiplication (prescribed by the relations), H defines a divi-
sion ring, This is often referred to as Hamilton’s quaternions.

The table of (row)(column) is as follows:

1 p q r
1M1 p q r
pip -1 r —q
qglg —r =1L p
rir q —p —1
By assumption, p¢g = —qp,qr = —rq,rp = —pr and therefore the ring is evidently non-

commutative. The multiplicative inverse is 1 (the element of H given by (¢, c(p), c(q),c(r)) =
(1,0,0,0)).
Every non-zero element of H has multiplicative inverse. To see this let @ be a non-zero element

of H of the form ¢ + ¢(p)p + ¢(q)g + ¢(r)r. By the assumption, the non-negative real numver
R = +c(p)* +clq)® +c(r)’
is indeed positive. Then the inverse of a is )
R
where b = ¢ —¢(p)p — c(q)q — c(r)r, ie.,

e = clp)p —clg)g —cr)r) = e — cp)p — ela)g — elrIr € HL

The element b plays the same role as the complex conjugation in C!

The set Z,, of equivalence classes with respect to ‘congruence mod 7’ is a rich source of non-
trivial examples of groups, rings and fields:

o (Z,,+) is a group.

® (Zy,+, x) is a commutative ring with identity. There are ¢(n) units in Z,. If n is not a
prime number, this is neither a field nor a division ring.

e Ifnisaprime number p, then Z, = F, is a field.

3 Polynomials

Definition. Let R be a ring. A polynomial f in one variable X with coeflicients in R is:
=X+ X" '+ X+

where ¢,,¢,_1, ..., c1, ¢ are elements of R which are often referred to as the coefficients of f.

10



The set of all polynomials in one variable X with coefficients in R will be denoted by R[X].

Defmition. The degree, denoted deg(f), of a non-zero polynomial f (in one variable X) is the
largest integer n for which its coefhicient ‘c,” of X" is non-zero. The degree is not defined for the
zero polynomial.

Definition. A non-zero polynomial f = ¢, X" +¢,_1 X" '+ -+ 4+ ¢1 X + ¢ of degree n is called
monic if the leading coeflicient ¢, = 1. The zero polynomial is defined to be monic.

Theorem 25. If R is a ring, then so is R[X] in terms of addition

(f +8)(X) =f(X) +g(X) =D (eulf) +culg)) X"

n

and multiplication

n

(8)(X) =f(X)g(X)=>_ (Z cr(f)cnr(g)> X"

If R is a ring with identity, then so is R[X]. If R is commutative, then so is R[X].
Proposition 26. If (R, +, X ) is a ring with identity 1, then R[X] is not a division ring.
Proposition 27. Let (F, +, x) be a field. The units F[X]* of F[X] are F* = F — {0}.

Theorem 28 (Division algorithm in the context of the polynomial ring F[X]). Let F be a field.
Let f and g be two polynomials in F[X] and assume, in particular, that g is non-zero. Then there
exists polynomials ¢ and 7 in F[X] such that

f=gq+r

where cither 7 = 0 or deg(r) < deg(g).

Definition. Let f and g be polynomials in F[X]. We say that g divides f, or g is a factor of f,
if there exists a polynomial ¢ in F[X] such that f = gg.

Remark. One needs to be careful when it comes to polynomial division. Suppose g divides f.
Then, for every unit y in F[X], the product gy also divides f! By Proposition 27, we know that
F[X]* = F — {0}, hence this assertions amounts to saying that if g divides f, then any non-zero
constant multiple of g also divides f.

Corollary 29. Let F be a field. Let f in F[X] and v be an element of F. Then there exists ¢ in
F[X] and 7 in F such that
[=X—-a)g+r.
Corollary 30. Let f in F[X] and v in F. The remainder of f when divided by (X — «) is f ().
In particular, f (o) = 0 if and only if X — « is a factor of f(X) in F[X].

11



We may use the corollary to check if a given polynomial factorises or not factorises at all.

Theorem 31.(The Fundamental Theorem of Algebra) Let n > 1. Let ¢, ¢y, ..., ¢, be complex
numbers, where ¢, is assumed to be non-zero. Then the polynomial ¢, X" + - - - 4 ¢ has at least one
root inside C.

Theorem 32.(The Fundamental Theorem of Algebra with multiplicities) Letn > 1. Lete, ¢q, ..., ¢,
be complex numbers, where ¢, is assumed to be non-zero. Then the polynomial f(X) = ¢, X" +
-+ + ¢ has exactly 7 roots in C counted with multiplicities, i.e. there exist complex numbers
at, ..., such that

J(X) = (X = an)(X = aen) -+ (X = o).
Theorem 33.

e Any two polynomials / and g have a greatest common divisor in F[X].

o The ged of two polynomials in F[X] can be found by Euclid’s algorithm.

o Ifgcd(f,g) = ¥ (a polynomial in F[X]), then there exist p, ¢ in F[X] such that
Jp+8a =7

these polynomials p and ¢ can also be found from the extended Euclid’s algorithm.

4  Matrices

Let (R, 4+, %) be a ring and let Ma(R) be the set of ‘matrices’

(£ 4

where a, b, ¢, d are elements of R, together with addition
a b n ad b\ fa+d b+
c d ¢ d) \e+cd d+d

a b a b\  (ad + b ab +bd
c d)\d d) \Necd+dd cb+db )"

Theorem 34. My(R) is a ring. If R is a ring with identity, then so is Ma(R).

and multiplication

00
where each entry 0 is the additive identity in R as defined in (R4-2). If R is a ring with identity 1,

then ((1) (1)) is the identity.

L . _ _ . (0 O
Remark. The additive identity, the identity element with respect to + defined above, is ( ) ,
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Remark. In contrast to Theorem 25, Ma(R) is never commutative, even if R is commutative.

Proposition 35. If (R, +, X ) is a ring with identity but is not a ring with the property that for
every elements @, b in R, the product is always ab = 0, then Ma(R) is neither commutative nor a
division ring.

Remarks. An example of those rings excluded is the ring (G, *, X) given by a group (G, *) with

multiplication @ X b = e for all a,b in G. A field is an example of those rings considered in the
proposition.

5 Permutations

Definition. A permutation of a set S is a function f : § — § which is bijection (one-to-one and
onto).

Definition. The set of permutations on the set {1,...,n} is denoted S, and every element o

P~y sl

in S, is written as

Proposition 36. |S,| = n!.

Definition. If / and g are permutations, we define the composition, denoted f o g to be the

which sends s in S to f(g(s)).
Proposition 37. If f and g are elements of S, then so is the composite f 0 g is in S,
Proposition 38. If f is in S, then the inverse function f ! exists and is an element of S,

Definition. Let 1, . . ., y; denote distinct elements of {1,...,n} (necessarily, 1 < 7 < n). The
cycle (y1, 72, ..., ¥-) is the permutation of S, which sends 1 to 2, ..., ¥,—1 to p, ,and y, to 1,
while maintaining those elements NOT in {1, ..., ¥, } unchanged. Following the representation
earlier, this is the element

1 . e ’)/'1 IR ’})T—l IR })T “ . n
1 . e ’J}2 ) ‘}}T ) }}1 IR n
of §, (it 1 < y; < -+- <y, <n,of course).

Theorem 39 Any permutation can be written as a composition of disjoint cycles. The repres-
entation is unique, up to the facts that

e the cycles can be written in any order,
e cach cycle can be started at any poin,

e cycles of length 1 can be left out.

13



Definition. Let / be an element of S,. The order of f is the smallest number of times we com-

pose f with f itself, f of of - -+ to get the identity.

Proposition 40. The order of a permutation is the least common multiple of the lengths of the
cycles in the disjoint cycle representation.

6 Groups revisited

Theorem 41. (S, o(composition)) is a group.
Proposition 42. S, is an abelian group if n < 2 and is non-abelian if n > 2.

Defiition. Let (G, %) be a group and I be a subset. We say that I' is a subgroup of G if (I, *)

is a group.
To recall, it needs to satisty the following;
(GO) Ifa and b are elements of ', then a * b is an element of T".

(G1) Ifa,b,care elements of I', then (a * b) * ¢ = a * (b * ¢) holds. Since the equality holds for

elements of G, this remains true for elements in I.

(G2) T contains the identity element ep. In fact, ep = e (the identity element of G). To sce this,
we firstly see that ep * ep = ep (in I'). On the other hand ep = ep * e (in G). Combining
er * ep = ep x e. It then follows from Proposition? that e = ep (in G).

(G3) Every element of I" has an inverse. By the uniqueness, this inverse is the inverse we get when
we think of it as an element of G. The content of what this assertion says if that if  is an
clement of T', then the inverse Y1 (in G) indeed lies in T.

Proposition 43. A non-empty subset I of a group (G, *) is a subgroup if and only if; for every
g,yinl, gxy tisinI.

Theorem 44 (Lagrange’s theorem). Let G be a finite group and H be a subgroup. Then |H|
divides | G]|.
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